×

A new interfacial imperfection coupling model (IICM) and its effect on the facture behavior of a layered multiferroic composite: anti-plane case. (English) Zbl 1406.74167

Summary: The across-interface diffusion and permeation of the ingredients in the manufacturing process inevitably induce magneto-electro-mechanical couplings in the interfacial regions of multiferroic composites that consist of alternate ferromagnetic (FM) and ferroelectric (FE) layers. Therefore, it is impossible for the mechanical, the magnetic and the electric interfacial imperfections to occur and grow independently. Up till now, the imperfection couplings have not been investigated. By extending the classical spring model, this article presents a new one to formulate these three kinds of imperfections and their inter-couplings in the anti-plane deformation case. Six coefficients are proposed to construct the model, three representing the imperfections and the other three characterizing the inter-couplings. On this basis, fracture analysis is further performed on a bi-layered multiferroic composite with two groups of cracks parallel to the imperfect interfacial region and each in a layer. Numerical results of the stress intensity factor (SIF) are obtained from the Cauchy singular integral equations derived by the methods of Fourier integral transform and Green’s function. The effects of the imperfections and their inter-couplings on the SIFs are surveyed, yielding three main conclusions: (a) the mechanical imperfection can enhance the SIFs independently; (b) the magnetic or electric imperfection can reduce the SIFs only if it is coupled with the mechanical one; (c) the magneto/electro-mechanical imperfection coupling can help to lower down the SIFs, but the magneto-electric imperfection coupling always has no effect on the SIFs. These conclusions can serves as theoretical references for the optimal design against intra-layer fracture of the multiferroic composites.

MSC:

74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alayo, W.; Tafur, M.; Xing, Y. T.; Baggio-Saitovitch, E.; Nascimento, V. P.; Alvarenga, A. D., Study of the interfacial regions in fe/CR multilayers, J. Appl. Phys., 102, 7, 073902, (2007)
[2] Benveniste, Y., The effective mechanical behavior of composite materials with imperfect contact between the constituents, Mech. Mater., 4, 2, 197-208, (1985)
[3] Benveniste, Y.; Miloh, T., Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater., 33, 6, 309-323, (2001)
[4] Cai, J. B.; Chen, W. Q.; Ye, G. R., Effect of interlaminar bonding imperfections on the behavior of angle-ply laminated cylindrical panels, Compos. Sci. Tech., 64, 1753-1762, (2004)
[5] Chen, W. Q.; Lee, K. Y., Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections, Compos. Struct., 65, 3-4, 329-337, (2004)
[6] Delale, F.; Erdogan, F., On the mechanical modeling of the interfacial region in bonded half-planes, J. Appl. Mech., 55, 2, 317-324, (1988)
[7] Fan, H.; Sze, K. Y., An micro-mechanics model for imperfect interface in dielectric materials, Mech. Mater., 33, 6, 363-370, (2001)
[8] Fan, H.; Yang, J. S.; Xu, L. M., Piezoelectric waves near an imperfectly bonded interface between two half-spaces, Appl. Phys. Lett., 88, 20, 203509, (2006)
[9] Gu, S. T.; He, Q. C., Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces, J. Mech. Phys. Solid, 59, 7, 1413-1426, (2011) · Zbl 1270.74037
[10] Hashin, Z., Thermoelastic properties of fiber composites with imperfect interface, Mech. Mater., 8, 4, 333-348, (1990)
[11] Hashin, Z., The spherical inclusion with imperfect interface, J. Appl. Mech., 58, 2, 444-449, (1991)
[12] Hashin, Z., Thin interphase/imperfect interface in elasticity with application to coated fiber composites, J. Mech. Phys. Solid, 50, 12, 2509-2537, (2002) · Zbl 1080.74006
[13] Huang, Y.; Li, X. F.; Lee, K. Y., Interfacial shear horizontal (SH) waves propagating in a two-phase piezoelectric/piezomagnetic structure with an imperfect interface, Philos. Mag. Lett., 89, 2, 95-103, (2009)
[14] Jin, B.; Fang, Q. H., Piezoelectric screw dislocations interacting with a circular inclusion with imperfect interface, Arch. Appl. Mech., 78, 1, 105-116, (2008) · Zbl 1161.74377
[15] Kang, Y. L.; Fu, D. H.; Wang, G. F.; Yu, S. W.; Pan, X. J., Analysis of displacement and strain field around a bimaterial interfacial region by stress couple theory and experiment, J. Strain Anal. Eng. Des., 37, 4, 281-287, (2002)
[16] Lebon, F.; Rizzoni, R., Asymptotic analysis of a thin interface: the case involving similar rigidity, Int. J. Eng. Sci., 48, 5, 473-486, (2010) · Zbl 1213.74249
[17] Le Quang, H.; Phan, T. L.; Bonnet, G., Effective thermal conductivity of periodic composites with highly conducting imperfect interfaces, Int. J. Therm. Sci., 50, 8, 1428-1444, (2011)
[18] Li, Y. D.; Lee, K. Y., Crack tip shielding and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor, Int. J. Solid. Struct., 46, 7-8, 1736-1742, (2009) · Zbl 1217.74103
[19] Li, Y. D.; Lee, K. Y., Effect of an imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor, Ultrasonics, 50, 4-5, 473-478, (2010)
[20] Li, Y. D.; Lee, K. Y., Effects of magneto-electric loadings and piezomagnetic/piezoelectric stiffening on multiferroic interface fracture, Eng. Fract. Mech., 77, 5, 856-866, (2010)
[21] Li, Y. D.; Lee, K. Y.; Pan, J. W., Collinear unequal crack series in magnetoelectroelastic materials: anti-plane case, ZAMM Z. Angew. Math. Mech., 91, 9, 743-752, (2011) · Zbl 1315.74018
[22] Li, Y. D.; Zhao, H.; Zhang, N., Mixed mode fracture of a piezoelectric-piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer, Int. J. Solid. Struct., 50, 22-23, 3610-3617, (2013)
[23] Miloh, T.; Benveniste, Y., On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces, Proc. Math. Phys. Eng. Sci., 455, 1987, 2687-2706, (1999) · Zbl 0937.74051
[24] Nairn, J. A., Generalized shear-lag analysis including imperfect interfaces, Adv. Compos. Lett., 13, 6, 263-274, (2004)
[25] Needleman, A., An analysis of decohesion along an imperfect interface, Int. J. Fract., 42, 1, 21-40, (1990)
[26] Nie, G. Q.; Liu, J. X.; Fang, X. Q.; An, Z. J., Shear horizontal (SH) waves propagating in piezoelectric-piezomagnetic bilayer system with an imperfect interface, Acta Mech., 223, 9, 1999-2009, (2012) · Zbl 1356.74071
[27] Otero, J. A.; Rodríguez-Ramos, R.; Bravo-Castillero, J.; Monsivais, G., Interfacial waves between two piezoelectric half-spaces with electro-mechanical imperfect interface, Philos. Mag. Lett., 92, 10, 534-540, (2012)
[28] Otero, J. A.; Rodríguez-Ramos, R.; Monsivais, G.; Stern, C.; Lebon, F., Interfacial waves between piezoelectric and piezomagnetic half-spaces with magneto-electro-mechanical imperfect interface, Philos. Mag. Lett., 93, 7, 413-421, (2013)
[29] Pitthan, E.; Lopes, L. D.; Palmieri, R., Influence of thermal growth parameters on the sio2/4H-sic interfacial region, APL Mater., 1, 2, 022101, (2013)
[30] Rizzoni, R.; Lebon, F., Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases, Mech. Res. Commun., 51, 1, 39-50, (2013)
[31] Shi, Y.; Wan, Y.; Zhong, Z., Variational bounds for the effective electroelastic moduli of piezoelectric composites with electromechanical coupling spring-type interfaces, Mech. Mater., 72, 1, 72-93, (2014)
[32] Shodja, H. M.; Tabatabaei, S. M.; Kamali, M. T., A piezoelectric medium containing a cylindrical inhomogeneity: role of electric capacitors and mechanical imperfections, Int. J. Solid. Struct., 44, 20, 6361-6381, (2007) · Zbl 1166.74344
[33] Sun, W. H.; Ju, G. L.; Pan, J. W.; Li, Y. D., Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite, Ultrasonics, 51, 7, 831-838, (2011)
[34] Wang, B. L.; Mai, Y. W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solid. Struct., 44, 2, 387-398, (2007) · Zbl 1178.74145
[35] Wang, H. M.; Zhao, Z. C., Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface, Arch. Appl. Mech., 83, 1, 43-51, (2013) · Zbl 1293.74246
[36] Wang, Y. S.; Huang, G. Y.; Gross, D., On the mechanical modeling of functionally graded interfacial zone with a griffith crack: plane deformation, Int. J. Fract., 125, 1-2, 189-205, (2004) · Zbl 1187.74207
[37] Wang, X.; Pan, E., Magnetoelectric effects in multiferroic fibrous composite with imperfect interface, Phys. Rev. B, 76, 21, 214107, (2007)
[38] Wang, X.; Pan, E.; Roy, A. K., Scattering of antiplane shear wave by a piezoelectric circular cylinder with an imperfect interface, Acta Mech., 193, 3-4, 177-195, (2007) · Zbl 1158.74398
[39] Yuan, L.; Du, J. K.; Ma, T.; Wang, J., Study on SH-SAW in imperfectly bonded piezoelectric structures loaded with viscous liquid, Acta Mech., 225, 1, 1-11, (2014) · Zbl 1401.74153
[40] Zhang, A. B.; Wang, B. L., An opportunistic analysis of the interface crack based on the modified interface dislocation method, Int. J. Solid. Struct., 50, 1, 15-20, (2013)
[41] Zheng, H.; Wang, J.; Lofland, S. E., Multiferroic batio3-cofe2O4 nanostructures, Science, 303, 5658, 661-663, (2004)
[42] Zhong, X. C.; Li, X. F., A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials, Int. J. Eng. Sci., 44, 18-19, 1394-1407, (2006)
[43] Zhou, Y. Y.; Chen, W. Q.; Lü, C. F., Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections, Compos. Struct., 92, 4, 1009-1018, (2010)
[44] Zhou, Z. G.; Wu, L. Z.; Wang, B., The dynamic behaviour of two collinear interfaces cracks in magneto-electro-elastic materials, Eur. J. Mech. A Solids, 24, 2, 253-262, (2005) · Zbl 1069.74047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.