×

NUAT T-splines of odd bi-degree and local refinement. (English) Zbl 1324.65024

Summary: This paper presents a new class of spline surfaces, named non-uniform algebraic-trigonometric T-spline surfaces (NUAT T-splines for short) of odd bi-degree. The NUAT T-spline surfaces are defined by applying the T-spline framework to the non-uniform algebraic-trigonometric B-spline surfaces (NUAT B-spline surfaces). Based on the knot insertion algorithm of the NUAT B-splines, a local refinement algorithm for the NUAT T-splines is given. This algorithm guarantees that the resulting control grid is a T-mesh as the original one. Finally, we prove that, for any NUAT T-spline of odd bi-degree, the linear independence of its blending functions can be determined by computing the rank of the NUAT T-spline-to-NUAT B-spline transformation matrix.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
65D07 Numerical computation using splines
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T W Sederberg, J Zheng, A Bakenov, A Nasri. T-splines and T-NURCCs, ACM Trans Graph, 2003, 22(3): 477–484. · Zbl 05457575 · doi:10.1145/882262.882295
[2] T W Sederberg, D L Cardon, G T Finnigan, N S North, J Zheng, T Lyche. T-spline simplification and local refinement, ACM Trans Graph, 2004, 23: 276–283. · Zbl 05457574 · doi:10.1145/1015706.1015715
[3] J W Zhang. C-curves: an extension of cubic curves, Comput Aided Geom Design, 1996, 13: 199–217. · Zbl 0900.68405 · doi:10.1016/0167-8396(95)00022-4
[4] J W Zhang. Two different forms of C-B-splines, Comput Aided Geom Design, 1997, 14: 31–41. · Zbl 0900.68418 · doi:10.1016/S0167-8396(96)00019-2
[5] G Z Wang, Q Y Chen, M H Zhou. NUAT B-spline curves, Comput Aided Geom Design, 2004, 21: 193–205. · Zbl 1069.41510 · doi:10.1016/j.cagd.2003.10.002
[6] X Li, J Zheng, T W Sederberg, T G R Hughes, M A Scott. On linear independence of T-spline blending functions, Comput Aided Geom Design, 2012, 29: 63–76. · Zbl 1251.65012 · doi:10.1016/j.cagd.2011.08.005
[7] G T Finnigan. Arbitrary degree T-splines, Master’s Thesis, Brigham Young University, 2008.
[8] Y Li, G Wang. Two kinds of B-basis of the algebraic hyperbolic space, J Zhejiang University, 2005, 6(A): 750–759. · doi:10.1631/jzus.2005.A0750
[9] Y Lü, G Wang, X Yang. Uniform hyperbolic polynomial B-spline curves, Comput Aided Geom Design, 2002, 19(6): 379–393. · doi:10.1016/S0167-8396(02)00092-4
[10] Y Bazilevs, V M Calo, J A Cottrell, J Evans, T J R Hughes, S Lipton, M A Scott, T W Sederberg. Isogeometric analysis using T-splines, Comput Methods Appl Mech Engrg, 2010, 199: 229–263. · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036
[11] G Xu, B Mourrain, R Duvigneau, A Galligo. Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput Methods Appl Mech Engrg, 2011, 200: 2021–2031. · Zbl 1228.65232 · doi:10.1016/j.cma.2011.03.005
[12] G Xu, B Mourrain, R Duvigneau, A Galligo. Analysis-suitable volume parameterization of multiblock computational domain in isogeometric applications, Comput Aided Design, 2013, 45: 395–404. · doi:10.1016/j.cad.2012.10.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.