×

A delay decomposition approach to delay-dependent robust passive control for Takagi-Sugeno fuzzy nonlinear systems. (English) Zbl 1267.93092

Summary: This paper is concerned with the problem of delay-dependent robust passive control for a fuzzy nonlinear system with time-varying delays. A Takagi-Sugeno fuzzy model approach is exploited to design a passive control for nonlinear systems with time-varying delay. By decomposing the delay interval into multiple equidistant subintervals, new Lyapunov-Krasovskii functionals (LKFs) are constructed on these intervals. Employing these new LKFs, a new robust passive control criterion is proposed in terms of linear matrix inequalities, which is dependent on the size of the time delay. We also design a state feedback controller that guarantees a robustly strictly passive closed-loop system for all admissible uncertainties. Finally, two numerical examples are given to illustrate the effectiveness of the developed techniques.

MSC:

93C42 Fuzzy control/observation systems
34K20 Stability theory of functional-differential equations
93D09 Robust stability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Calcev, Passivity approach to fuzzy control systems. Automatica 33, 339–344 (1998) · Zbl 0919.93047 · doi:10.1016/S0005-1098(97)00202-1
[2] Y. Cao, J. Lam, Computation of robust stability bounds for time-delay systems with nonlinear time varying perturbations. J. Syst. Sci. 31, 359–365 (2000) · Zbl 1080.93519 · doi:10.1080/002077200291190
[3] W.J. Chang, S.S. Jhang, C.C. Ku, Passive fuzzy control for uncertain nonlinear stochastic inverted pendulum robot system, in IEEE International Conference on Fuzzy Systems (2011), pp. 27–30
[4] B. Chen, X.P. Liu, S.C. Tong, C. Lin, Observer-based stabilization of T–S fuzzy systems with input delay. IEEE Trans. Fuzzy Syst. 16, 652–663 (2008) · Zbl 05516463 · doi:10.1109/TFUZZ.2007.903329
[5] L.O. Chua, Passivity and complexity. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46, 71–82 (1999) · Zbl 0948.92002 · doi:10.1109/81.739186
[6] D. Driankor, H. Hellendoorn, M. Reinfrank, An Introduction to Fuzzy Control (Springer, Berlin, 1993) · Zbl 0789.93088
[7] F. Gouaisbaut, D. Peaucelle, Delay-dependent stability analysis of linear time delay systems, in TDS’06, Aquila, Italy, July 10–12 (2006) · Zbl 1293.93589
[8] K. Gu, A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Int. J. Control 74, 737–744 (2001) · Zbl 1015.34061 · doi:10.1080/00207170010031486
[9] K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)
[10] Q.L. Han, Robust stability for a class of linear systems with time varying delay and nonlinear perturbations. Comput. Math. Appl. 47, 1201–1209 (2004) · Zbl 1154.93408 · doi:10.1016/S0898-1221(04)90114-9
[11] D.J. Hill, P.J. Moylan, Stability results for nonlinear feedback systems. Automatica 13, 377–382 (1977) · Zbl 0356.93025 · doi:10.1016/0005-1098(77)90020-6
[12] C. Li, B. Cui, Delay-dependent passive control of linear systems with nonlinear perturbation. J. Syst. Eng. Electron. 19, 346–350 (2008) · Zbl 05914598 · doi:10.1016/S1004-4132(08)60231-5
[13] C.G. Li, H.B. Zhang, X.F. Liao, Passivity and passification of uncertain fuzzy systems. IEE Proc., Circuits Devices Syst. 152, 649–653 (2005) · doi:10.1049/ip-cds:20045192
[14] C.G. Li, H.B. Zhang, X.F. Liao, Passivity and passification of fuzzy systems with time delays. Comput. Math. Appl. 52, 1067–1078 (2006) · Zbl 1122.93368 · doi:10.1016/j.camwa.2006.03.029
[15] G. Li, H. Li, C. Yang, Delay-dependent robust passivity control for uncertain time-delay systems. J. Syst. Eng. Electron. 18, 879–884 (2007) · Zbl 1223.93025 · doi:10.1016/S1004-4132(08)60035-3
[16] J. Liang, Z. Wang, X. Liu, Robust passivity and passification of stochastic fuzzy time-delay systems. Inf. Sci. doi: 10.1016/j.ins.2010.01.003 (2010) · Zbl 1282.93159
[17] W. Lin, C.I. Byrnes, Passivity and absolute stabilization of a class of discrete-time nonlinear systems. Automatica 31, 263–267 (1995) · Zbl 0826.93060 · doi:10.1016/0005-1098(94)00075-T
[18] C. Lin, Q.G. Wang, T.H. Lee, Y. He, B. Chen, Observer-based H fuzzy control design for T–S fuzzy systems with state delays. Automatica 44, 868–874 (2008) · Zbl 1283.93164 · doi:10.1016/j.automatica.2007.07.018
[19] R. Lozano, B. Brogliato, O. Egeland, B. Maschke, Dissipative Systems Analysis and Control (Springer, New York, 2000) · Zbl 0958.93002
[20] Y.B. Luo, Y.Y. Cao, Y.X. Sun, Robust stability of uncertain Takagi–Sugeno fuzzy systems with time-varying input-delay. Acta Autom. Sin. 34, 87–92 (2008) · doi:10.3724/SP.J.1004.2008.00087
[21] M.S. Mahmoud, M. Zribi, Passive control synthesis for uncertain systems with multiple-state delays. Comput. Electr. Eng. 28, 195–216 (2002) · Zbl 1047.93020 · doi:10.1016/S0045-7906(01)00056-8
[22] P. Niamsup, K. Mukdasai, N.N. Phat, Improved exponential stability for time-varying systems with nonlinear delayed perturbations. Appl. Math. Comput. 204, 490–495 (2008) · Zbl 1168.34355 · doi:10.1016/j.amc.2008.07.022
[23] J.H. Park, Further results on passivity analysis of delayed cellular neural networks. Chaos Solitons Fractals 34, 1546–1551 (2007) · Zbl 1152.34380 · doi:10.1016/j.chaos.2005.04.124
[24] C. Peng, Y.C. Tian, E.G. Tian, Improved delay-dependent robust stabilization conditions of uncertain T–S fuzzy systems with time-varying delay. Fuzzy Sets Syst. 159, 2713–2729 (2008) · Zbl 1170.93344 · doi:10.1016/j.fss.2008.03.009
[25] J. Qiu, Z. Gao, Y. Xia, J. Zhang, Delay-dependent robust passive control for a class of nonlinear systems with time-varying delays. Optim. Control Appl. Methods 29, 353–371 (2008) · doi:10.1002/oca.832
[26] F. Qiu, B. Cui, Y. Ji, A delay-dividing approach to stability of neutral system with mixed delays and nonlinear perturbations. Appl. Math. Model. 34, 3701–3707 (2010) · Zbl 1201.93098 · doi:10.1016/j.apm.2010.03.013
[27] F. Qiu, B. Cui, Y. Ji, Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations. Nonlinear Anal., Real World Appl. 11, 895–906 (2010) · Zbl 1187.37124 · doi:10.1016/j.nonrwa.2009.01.032
[28] T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985) · Zbl 0576.93021 · doi:10.1109/TSMC.1985.6313399
[29] C.W. Wu, Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, and observer design. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 1257–1261 (2001) · Zbl 0999.94577 · doi:10.1109/81.956024
[30] H.N. Wu, H.X. Li, New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 15, 482–493 (2007) · Zbl 05452489 · doi:10.1109/TFUZZ.2006.889963
[31] L.H. Xie, M.Y. Fu, H.Z. Li, Passivity analysis and passification for uncertain signal processing systems. IEEE Trans. Signal Process. 46, 2394–2403 (1998) · doi:10.1109/78.709527
[32] L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973) · Zbl 0273.93002 · doi:10.1109/TSMC.1973.5408575
[33] X.-M. Zhang, Q.-L. Han, A delay decomposition approach to delay-dependent stability for linear systems with time-varying delays. Int. J. Robust Nonlinear Control 19, 1922–1930 (2009) · Zbl 1185.93106 · doi:10.1002/rnc.1413
[34] W. Zhang, X.-S. Cai, Z.-Z. Han, Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 234, 174–180 (2010) · Zbl 1185.93111 · doi:10.1016/j.cam.2009.12.013
[35] Y. Zhao, H. Gao, J. Lames, B. Du, Stability and stabilization of delayed T–S fuzzy systems: a delay partitioning approach. IEEE Trans. Fuzzy Syst. 17, 750–762 (2009) · doi:10.1109/TFUZZ.2008.928598
[36] Z. Zou, Y. Wang, New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations. IEE Proc. Part D. Control Theory Appl. 153, 623–626 (2006) · doi:10.1049/ip-cta:20045258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.