×

Cavitation impact damage of polymer: a multi-physics approach incorporating phase-field. (English) Zbl 07804983

Summary: The challenge of material surface damage and spalling, caused by high-frequency, high-pressure jets owing to cavitation, remains a substantial concern. To better understand the physical mechanisms of cavitation-induced cyclic impact, we developed a multi-field-coupling framework. This framework encapsulates polymer viscoelastic-viscoplastic deformation, thermal softening, strain softening, and damage evolution represented by phase fields, which are crucial processes in cyclic impact. Particularly, we achieved full coupling between these key physical processes by introducing appropriate functional forms. We emphasize the need to include both plasticity and viscosity in the energy-driving crack propagation, to accurately represent the accumulation of polymer fatigue damage. With this thermodynamically consistent, fully coupled model, we could simulate surface ring cracking, a phenomenon often observed experimentally under cyclical impact loading. In the context of this particular crack morphology, we also discerned distinct fatigue failure mechanisms when variables such as strength, the radial extent of the cavitation impact load, and others were altered. We propose that a key determinant of cavitation flow impact is the combined effect of thermal softening, strain softening, and phase-field degradation within the polymer. Understanding these mechanisms offers a deeper insight into cavitation damage and provides a theoretical basis for cavitation-resistant design.

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Flint, E. B.; Suslick, K. S., The temperature of cavitation. Science, 1397-1399 (1991)
[2] Taleyarkhan, R. P.; West, C.; Cho, J.; Lahey, R. T.; Nigmatulin, R. I.; Block, R., Evidence for nuclear emissions during acoustic cavitation. Science, 1868-1873 (2002)
[3] Franc, J.-P.; Michel, J.-M., Fundamentals of Cavitation (2006), Springer science & Business media
[4] Liu, Q.; Li, Z.; Du, S.; He, Z.; Han, J.; Zhang, Y., Cavitation erosion behavior of GH 4738 nickel-based superalloy. Tribol. Int. (2021)
[5] Gonzalez-Avila, S. R.; Nguyen, D. M.; Arunachalam, S.; Domingues, E. M.; Mishra, H.; Ohl, C.-D., Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Sci. Adv., eaax6192 (2020)
[6] Kühlmann, J.; y Lozano, C. L.d. A.; Hanke, S.; Kaiser, S. A., Correlation of laser-induced single bubbles with cavitation damage via in-situ imaging. Wear (2023)
[7] Deplancke, T.; Lame, O.; Cavaillé, J.-Y.; Fivel, M.; Riondet, M.; Franc, J.-P., Outstanding cavitation erosion resistance of ultra high molecular weight polyethylene (UHMWPE) coatings. Wear, 301-308 (2015)
[8] Hattori, S.; Itoh, T., Cavitation erosion resistance of plastics. Wear, 1103-1108 (2011)
[9] Kawaguchi, T.; Nishimura, H.; Ito, K.; Sorimachi, H.; Kuriyama, T.; Narisawa, I., Impact fatigue properties of glass fiber-reinforced thermoplastics. Compos. Sci. Technol., 1057-1067 (2004)
[10] Wei, Q.; Zhu, L.; Zhu, J.; Zhuo, L.; Hao, W.; Xie, W., Characterization of impact fatigue damage in CFRP composites using nonlinear acoustic resonance method. Compos. Struct. (2020)
[11] Szkodo, M.; Stanisławska, A.; Komarov, A.; Bolewski, Ł., Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys. Wear (2021)
[12] Soyama, H.; Chighizola, C. R.; Hill, M. R., Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel. J. Mater Process. Technol. (2021)
[13] Brod, M.; Dean, A.; Scheffler, S.; Gerendt, C.; Rolfes, R., Numerical modeling and experimental validation of fatigue damage in Cross-Ply CFRP composites under inhomogeneous stress states. Composites B (2020)
[14] Dean, A.; Reinoso, J.; Sahraee, S.; Rolfes, R., An invariant-based anisotropic material model for short fiber-reinforced thermoplastics: Coupled thermo-plastic formulation. Composites A, 186-199 (2016)
[15] Wu, J. Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids, 72-99 (2017)
[16] Wu, J.-Y.; Nguyen, V. P.; Nguyen, C. T.; Sutula, D.; Sinaie, S.; Bordas, S. P., Phase-field modeling of fracture. Adv. Appl. Mech., 1-183 (2020)
[17] Weitsman, Y. J.; Elahi, M., Effects of fluids on the deformation, strength and durability of polymeric composites - An overview. Mech. Time-Depend. Mater., 107-126 (2000)
[18] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Engrg., 2765-2778 (2010) · Zbl 1231.74022
[19] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech., 383-405 (2015) · Zbl 1398.74270
[20] Kumar, A.; Bourdin, B.; Francfort, G. A.; Lopez-Pamies, O., Revisiting nucleation in the phase-field approach to brittle fracture. J. Mech. Phys. Solids (2020)
[21] Chu, D.; Li, X.; Liu, Z., Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling. Int. J. Fract., 115-130 (2017)
[22] Dean, A.; Reinoso, J.; Jha, N. K.; Mahdi, E.; Rolfes, R., A phase field approach for ductile fracture of short fibre reinforced composites. Theor. Appl. Fract. Mech. (2020)
[23] Ye, J. Y.; Ballarini, R.; Zhang, L. W., A nonlinear and rate-dependent fracture phase field framework for multiple cracking of polymer. Comput. Methods Appl. Mech. Engrg. (2023) · Zbl 07737585
[24] Zeng, Q. L.; Wang, T.; Zhu, S. X.; Chen, H. S.; Fang, D. N., A rate-dependent phase-field model for dynamic shear band formation in strength-like and toughness-like modes. J. Mech. Phys. Solids (2022)
[25] Xu, Y.; Ming, P. B.; Chen, J., A phase field framework for dynamic adiabatic shear banding. J. Mech. Phys. Solids (2020)
[26] Schroder, J.; Pise, M.; Brands, D.; Gebuhr, G.; Anders, S., Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74416
[27] Loew, P. J.; Peters, B.; Beex, L. A., Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation. Mech. Mater. (2020)
[28] Sun, J.; Qian, G.; Li, J.; Li, R.; Jian, Z.; Hong, Y.; Berto, F., A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy. J. Mech. Phys. Solids (2023)
[29] Li, G.; Yin, B. B.; Zhang, L. W.; Liew, K. M., A framework for phase-field modeling of interfacial debonding and frictional slipping in heterogeneous composites. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74092
[30] Nguyen, T. T.; Yvonnet, J.; Zhu, Q. Z.; Bornert, M.; Chateau, C., A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput. Methods Appl. Mech. Engrg., 567-595 (2016) · Zbl 1439.74243
[31] Miehe, C.; Schaenzel, L.-M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Engrg., 449-485 (2015) · Zbl 1423.74838
[32] Kumar, P.; Dean, A.; Reinoso, J.; Paggi, M., Nonlinear thermo-elastic phase-field fracture of thin-walled structures relying on solid shell concepts. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74392
[33] Wu, J.-Y.; Mandal, T. K.; Vinh Phu, N., A phase-field regularized cohesive zone model for hydrogen assisted cracking. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1441.74219
[34] Kristensen, P. K.; Niordson, C. F.; Martinez-Paneda, E., Applications of phase field fracture in modelling hydrogen assisted failures. Theor. Appl. Fract. Mech. (2020)
[35] Svolos, L.; Bronkhorst, C. A.; Waisman, H., Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method. J. Mech. Phys. Solids (2020)
[36] Ye, J.-Y.; Zhang, L.-W., Damage evolution of polymer-matrix multiphase composites under coupled moisture effects. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74369
[37] Shen, R. L.; Waisman, H.; Guo, L. C., Fracture of viscoelastic solids modeled with a modified phase field method. Comput. Methods Appl. Mech. Engrg., 862-890 (2019) · Zbl 1440.74365
[38] Loew, P. J.; Peters, B.; Beex, L. A.A., Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation. Mech. Mater. (2020)
[39] Hosseini, Z. S.; Dadfarnia, M.; Somerday, B. P.; Sofronis, P.; Ritchie, R. O., On the theoretical modeling of fatigue crack growth. J. Mech. Phys. Solids, 341-362 (2018)
[40] Roy, S. C.; Franc, J. P.; Pellone, C.; Fivel, M., Determination of cavitation load spectra - Part 1: Static finite element approach. Wear, 110-119 (2015)
[41] Roy, S. C.; Franc, J. P.; Ranc, N.; Fivel, M., Determination of cavitation load spectra-Part 2: Dynamic finite element approach. Wear, 120-129 (2015)
[42] Benaarbia, A.; Chatzigeorgiou, G.; Kiefer, B.; Meraghni, F., A fully coupled thermo-viscoelastic-viscoplastic-damage framework to study the cyclic variability of the Taylor-Quinney coefficient for semi-crystalline polymers. Int. J. Mech. Sci. (2019)
[43] Vu-Bac, N.; Bessa, M. A.; Rabczuk, T.; Liu, W. K., A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules, 6713-6723 (2015)
[44] Poulain, X.; Benzerga, A.; Goldberg, R., Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime. Int. J. Plast., 138-161 (2014)
[45] Loew, P. J.; Poh, L. H.; Peters, B.; Beex, L. A.A., Accelerating fatigue simulations of a phase-field damage model for rubber. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.74020
[46] Rocha, I.; van der Meer, F. P.; Raijmaekers, S.; Lahuerta, E.; Nijssen, R. P.L.; Sluys, L. J., Numerical/experimental study of the monotonic and cyclic viscoelastic/viscoplastic/fracture behavior of an epoxy resin. Int. J. Solids Struct., 153-165 (2019)
[47] Melro, A.; Camanho, P.; Pires, F. A.; Pinho, S., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I-Constitutive modelling. Int. J. Solids Struct., 1897-1905 (2013)
[48] Melro, A. R.; Camanho, P. P.; Andrade Pires, F. M.; Pinho, S. T., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I - Constitutive modelling. Int. J. Solids Struct., 1897-1905 (2013)
[49] Haouala, S.; Doghri, I., Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles. Int. J. Plast., 98-125 (2015)
[50] Van-Dung, N.; Wu, L.; Noels, L., A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. Validation on carbon fiber reinforced high-crosslinked RTM6 epoxy resin. Mech. Mater., 193-213 (2019)
[51] Peerlings, R. H.J.; Geers, M. G.D.; de Borst, R.; Brekelmans, W. A.M., A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct., 7723-7746 (2001) · Zbl 1032.74008
[52] Nguyen, V. D.; Lani, F.; Pardoen, T.; Morelle, X. P.; Noels, L., A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int. J. Solids Struct., 192-216 (2016)
[53] Jeong, H.; Signetti, S.; Han, T. S.; Ryu, S., Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput. Mater. Sci., 483-492 (2018)
[54] Wu, J. Y.; Nguyen, V. P., A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids, 20-42 (2018)
[55] Singh, S.; Choi, J.-K.; Chahine, G. L., Characterization of cavitation fields from measured pressure signals of cavitating jets and ultrasonic horns. J. Fluids Eng. (2013)
[56] Choi, J. K.; Jayaprakash, A.; Kapahi, A.; Hsiao, C. T.; Chahine, G. L., Relationship between space and time characteristics of cavitation impact pressures and resulting pits in materials. J. Mater. Sci., 3034-3051 (2014)
[57] Pohl, F.; Mottyll, S.; Skoda, R.; Huth, S., Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element-assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials. Wear, 618-628 (2015)
[58] Feng, Y.; He, Y. T.; Tan, X. F.; An, T.; Zheng, J., Investigation on impact damage evolution under fatigue load and shear-after-impact-fatigue (SAIF) behaviors of stiffened composite panels. Int. J. Fatigue, 308-321 (2017)
[59] Correa, C. E.; Garcia, G. L.; Garcia, A. N.; Bejarano, W.; Guzman, A. A.; Toro, A., Wear mechanisms of epoxy-based composite coatings submitted to cavitation. Wear, 2274-2279 (2011)
[60] Islam, M. M.; Shakil, S.; Shaheen, N.; Bayati, P.; Haghshenas, M., An overview of microscale indentation fatigue: Composites, thin films, coatings, and ceramics. Micron (2021)
[61] Niwa, M.; Toyama, H.; Yonezu, A., Investigation of fracture mechanism of electroplated coating subjected to contact loading, 7
[62] Hopkinson, B., The Scientific Papers of Bertram Hopkinson (1975), CUP Archive
[63] Gagani, A.; Fan, Y. M.; Muliana, A. H.; Echtermeyer, A. T., Micromechanical modeling of anisotropic water diffusion in glass fiber epoxy reinforced composites. J. Compos. Mater., 2321-2335 (2018)
[64] Nguyen, V. D.; Wu, L.; Noels, L., A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. Validation on carbon fiber reinforced high-crosslinked RTM6 epoxy resin. Mech. Mater., 193-213 (2019)
[65] Sain, T.; Loeffel, K.; Chester, S., A thermo-chemo-mechanically coupled constitutive model for curing of glassy polymers. J. Mech. Phys. Solids, 267-289 (2018)
[66] Rocha, I.; van der Meer, F. P.; Raijmaekers, S.; Lahuerta, F.; Nijssen, R. P.L.; Mikkelsen, L. P.; Sluys, L. J., A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites. Eur. J. Mech. A-Solids, 407-419 (2019)
[67] Benaarbia, A.; Chatzigeorgiou, G.; Kiefer, B.; Meraghni, F., A fully coupled thermo-viscoelastic-viscoplastic-damage framework to study the cyclic variability of the Taylor-Quinney coefficient for semi-crystalline polymers. Int. J. Mech. Sci. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.