×

Synchronization transmission of spiral wave and turbulence within the uncertain switching network. (English) Zbl 1400.92020

Summary: We consider the synchronization transmission problem of spiral wave and turbulence within the uncertain switching network. Through constructing reasonably the Lyapunov function of the network, the uncertain switching network not only can transfer synchronously the spiral wave and turbulence originated from the synchronization target, but also the chattering near the synchronization target can be eliminated, which indicates that the synchronization performance of the network is more stable. At the same time, the adaptive laws of the uncertain parameters are designed and the uncertain parameters in the switching network nodes are replaced effectively.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
05C82 Small world graphs, complex networks (graph-theoretic aspects)
35K40 Second-order parabolic systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sutthiopad, M.; Luengviriya, J.; Porjai, P.; Phantu, M.; Kanchanawarin, J.; Müller, S. C.; Luengviriya, C., Propagation of spiral waves pinned to circular and rectangular obstacles, Phys. Rev. E, 91, 5, 052912-8 (2015)
[2] Tinsley, M. R.; Collison, D.; Showalter, K., Three-dimensional modeling of propagating precipitation waves, Chaos, 25, 6, 064306-9 (2015)
[3] Marsal, N.; Caullet, V.; Wolfersberger, D.; Sciamanna, M., Spatial rogue waves in a photorefractive pattern-forming system, Opt. Lett., 39, 12, 3690-3693 (2014)
[4] Jing, X. D.; Lü, L., The synchronization of spatiotemporal chaos of all-to-all network using nonlinear coupling, Acta Phys. Sinica, 58, 11, 7539-7543 (2009)
[5] Ma, J.; Tang, J.; Wang, C. N.; Jia, Y., Propagation and synchronization of \(Ca^{2 +}\) spiral waves in excitable media, Int. J. Bifurcation Chaos, 21, 2, 587-601 (2011)
[6] Nie, H.; Xie, L.; Gao, J. H.; Zhan, M., Projective synchronization of two coupled excitable spiral waves, Chaos, 21, 2, 023107-8 (2011) · Zbl 1317.93140
[7] Parlitz, U.; Schlemmer, A.; Luther, S., Synchronization patterns in transient spiral wave dynamics, Phys. Rev. E, 83, 5, 057201-4 (2011)
[8] Cai, M. C.; Pan, J. T.; Zhang, H., Electric-field-sustained spiral waves in subexcitable media, Phys. Rev. E, 86, 1, 016208-5 (2012)
[9] Chen, J. X.; Peng, L.; Zhao, Y. H.; You, S. P.; Wu, N. G.; Ying, H. P., Dynamics of spiral waves driven by a rotating electric field, Commun. Nonlinear Sci. Numer. Simul., 19, 1, 60-66 (2014)
[10] Wang, C. N.; Ma, J., Suppression of the spiral wave in cardiac tissue by using forcing currents with diversity, Acta Phys. Sinica, 62, 8, 084501-9 (2013)
[11] Wang, H. L.; Ouyang, S., Spiral waves and instability control in 3D reaction- diffusion systems, Sci. China Phys. Mech. Astron., 44, 12, 1291-1300 (2014)
[12] Watts, D. J.; Strogatz, S. H., Collective dynamics of “small world” networks, Nature, 393, 6684, 440-442 (1998) · Zbl 1368.05139
[13] Albert, R.; Jeong, H.; Barabási, A. L., Diameter of the world-wide web, Nature, 401, 6749, 130-131 (1999)
[14] Skardal, P. S.; Taylor, D.; Sun, J.; Arenas, A., Erosion of synchronization in networks of coupled oscillators, Phys. Rev. E, 91, 010802-5 (2015)
[15] Li, W. L.; Zhang, F. Y.; Li, C.; Song, H. S., Quantum synchronization in a star-type cavity QED network, Commun. Nonlinear Sci. Numer. Simul., 42, 121-131 (2017) · Zbl 1448.81167
[16] Aguirre, J.; Sevilla-Escoboza, R.; Gutiérrez, R.; Papo, D.; Buldú, J. M., Synchronization of interconnected networks: the role of connector nodes, Phys. Rev. Lett., 112, 248701-5 (2014)
[17] Li, W. L.; Li, C.; Song, H. S., Quantum synchronization in an optomechanical system based on Lyapunov control, Phys. Rev. E, 93, 6, 062221-10 (2016)
[18] Lü, L.; Chen, L. S.; Bai, S. Y.; Li, G., A new synchronization tracking technique for uncertain discrete network with spatiotemporal chaos behaviors, Physica A, 460, 314-325 (2016) · Zbl 1400.93176
[19] Ahmadizadeh, S.; Nešić, D.; Freestone, D. R.; Grayden, D. B., On synchronization of networks of Wilson-Cowan oscillators with diffusive coupling, Automatica, 71, 169-178 (2016) · Zbl 1343.93004
[20] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 10, 2109-2112 (1998)
[21] Selivanov, A.; Fradkov, A.; Fridman, E., Passification-based decentralized adaptive synchronization of dynamical networks with time-varying delays, J. Franklin Inst., 352, 52-72 (2015) · Zbl 1307.93205
[22] Bezzo, N.; Cruz, P. J.; Sorrentino, F.; Fierro, R., Decentralized identification and control of networks of coupled mobile platforms through adaptive synchronization of chaos, Physica D, 267, 1, 94-103 (2014) · Zbl 1285.93047
[23] Ghaffari, A.; Arebi, S., Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers, Nonlinear Dynam., 83, 1, 1003-1013 (2016) · Zbl 1349.34200
[24] Rakkiyappan, R.; Sakthivel, N., Pinning sampled-data control for synchronization of complex networks with probabilistic time-varying delays using quadratic convex approach, Neurocomputing, 162, 26-40 (2015)
[25] Mahdavi, N.; Menhaj, M. B.; Kurths, J.; Lu, J. Q.; Afshar, A., Pinning impulsive synchronization of complex dynamical networks, Int. J. Bifurcation Chaos, 22, 1250239-14 (2012) · Zbl 1258.34127
[26] Lü, L.; Li, Y. S.; Fan, X.; Lü, N., Outer synchronization between uncertain complex networks based on Backstepping design, Nonlinear Dynam., 73, 1, 767-773 (2013) · Zbl 1281.34091
[27] Selivanov, A. A.; Lehnert, J.; Dahms, T.; Hövel, P.; Fradkov, A. L.; Schöll, E., Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators, Phys. Rev. E, 85, 1, 016201-8 (2012)
[28] Lü, L.; Li, C. R.; Chen, L. S.; Wei, L. L., Lag projective synchronization of a class of complex network constituted nodes with chaotic behavior, Commun. Nonlinear Sci. Numer. Simul., 19, 8, 2843-2849 (2014) · Zbl 1510.93190
[29] Hildebrand, M.; Bär, M.; Eiswirth, M., Statistics of topological defects and spatiotemporal chaos in a reaction-diffusion system, Phys. Rev. Lett., 75, 8, 1503-1506 (1995)
[30] Meixner, M.; Bose, S.; Schöll, E., Analysis of complex and chaotic patterns near a codimension-2 Turing-Hopf point in a reaction-diffusion model, Physica D, 109, 1-2, 128-138 (1997) · Zbl 0925.58085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.