zbMATH — the first resource for mathematics

Reasoning about proof and knowledge. (English) Zbl 06986593
Summary: In previous work [15], we presented a hierarchy of classical modal systems, along with algebraic semantics, for the reasoning about intuitionistic truth, belief and knowledge. Deviating from Gödel’s interpretation of IPC in S4, our modal systems contain IPC in the way established in [13]. The modal operator can be viewed as a predicate for intuitionistic truth, i.e. proof. Epistemic principles are partially adopted from Intuitionistic Epistemic Logic IEL [4]. In the present paper, we show that the S5-style systems of our hierarchy correspond to an extended Brouwer-Heyting-Kolmogorov interpretation and are complete w.r.t. a relational semantics based on intuitionistic general frames. In this sense, our S5-style logics are adequate and complete systems for the reasoning about proof combined with belief or knowledge. The proposed relational semantics is a uniform framework in which also IEL can be modeled. Verification-based intuitionistic knowledge formalized in IEL turns out to be a special case of the kind of knowledge described by our S5-style systems.
03B45 Modal logic (including the logic of norms)
03B42 Logics of knowledge and belief (including belief change)
03F45 Provability logics and related algebras (e.g., diagonalizable algebras)
03G10 Logical aspects of lattices and related structures
PDF BibTeX Cite
Full Text: DOI
[1] Artemov, S., Explicit provability and constructive semantics, Bull. Symbolic Logic, 7, 1, 1-36, (2001) · Zbl 0980.03059
[2] Artemov, S.; Beklemishev, L., Provability logic, (Gabbay, D.; Guenthner, F., Handbook of Philosophical Logic, vol. 13, (2005), Springer), 189-360
[3] Artemov, S.; Fitting, M., Justification logic, (Zalta, Edward N., The Stanford Encyclopedia of Philosophy, (2016))
[4] Artemov, S.; Protopopescu, T., Intuitionistic epistemic logic, Rev. Symb. Log., 9, 2, 266-298, (2016) · Zbl 1408.03004
[5] van Atten, M., The hypothetical judgement in the history of intuitionistic logic, (Glymour, C.; Wang, W.; Westerstahl, D., Logic, Methodology, and Philosophy of Science 13: Proceedings of the 2007 International Congress in Beijing, (2007), King’s College Publications: King’s College Publications London), 122-136
[6] van Atten, M., (Zalta, Edward N., The Stanford Encyclopedia of Philosophy, (2017))
[7] Bloom, S. L.; Suszko, R., Investigation into the sentential calculus with identity, Notre Dame J. Form. Log., 13, 3, 289-308, (1972) · Zbl 0188.01203
[8] Chagrov, A.; Zakharyaschev, M., Modal Logic, (1997), Clarendon Press: Clarendon Press Oxford · Zbl 0871.03007
[9] Hughes, G. E.; Cresswell, M. J., A New Introduction to Modal Logic, (1996), Routledge · Zbl 0855.03002
[10] Lewitzka, S., \(\in_K\): a non-Fregean logic of explicit knowledge, Studia Logica, 97, 2, 233-264, (2011) · Zbl 1231.03016
[11] Lewitzka, S., Construction of a canonical model for a first-order non-Fregean logic with a connective for reference and a total truth predicate, Log. J. IGPL, 20, 6, 1083-1109, (2012) · Zbl 1283.03058
[12] Lewitzka, S., Algebraic semantics for a modal logic close to S1, J. Logic Comput., 26, 5, 1769-1783, (2016), first published online: November 27, 2014 · Zbl 1396.03032
[13] Lewitzka, S., A modal logic amalgam of classical and intuitionistic propositional logic, J. Logic Comput., 27, 1, 201-212, (2017), first published online: July 20, 2015 · Zbl 1444.03066
[14] Lewitzka, S., Denotational semantics for modal systems S3-S5 extended by axioms for propositional quantifiers and identity, Studia Logica, 103, 3, 507-544, (2015) · Zbl 1371.03026
[15] Lewitzka, S., Epistemic extensions of combined classical and intuitionistic propositional logic, Log. J. IGPL, 25, 3, 309-324, (2017)
[16] D’Ottaviano, I. M.; Feitosa, H. A., On Gödel’s modal interpretation of the intuitionistic logic, (Beziau, J.-Y., Universal Logic: An Anthology: From Paul Hertz to Dov Gabbay, (2012), Springer), 71-88 · Zbl 1291.03010
[17] Sträter, W., Epsilon-T: Eine Logik erster Stufe mit Selbstreferenz und totalem Wahrheitsprädikat, (1992), Technische Universität Berlin, Dissertation, Band 98 KIT Report, Fachbereich Informatik
[18] Suszko, R., Abolition of the Fregean axiom, (Parikh, R., Logic Colloquium, Lecture Notes in Mathematics, vol. 453, (1975), Springer Verlag), 169-239, 2006 · Zbl 0308.02026
[19] Zeitz, P., Parametrisierte \(\in_T\)-Logik, (2000), Technische Universität Berlin: Technische Universität Berlin Logos-Verlag Berlin, Dissertation · Zbl 0992.03013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.