×

Global regularity and convergence of a Birkhoff-Rott-\(\alpha \) approximation of the dynamics of vortex sheets of the two-dimensional Euler equations. (English) Zbl 1218.76012

The authors present an \(\alpha\)-regularization of the Birkhoff-Rott equation (BR-\(\alpha\) equation), induced by the two-dimensional Euler-\(\alpha\) equations, for the vortex sheet dynamics. It is shown the convergence of the solutions of Euler-\(\alpha\) equations to a weak solution of the Euler equations for initial vorticity being a finite Radon measure of fixed sign, which includes the vortex sheets case. It is also shown that, provided the initial density of vorticity is an integrable function over the curve with respect to the arc length measure, (i) an initially Lipschitz chord arc vortex sheet (curve), evolving under the BR-\(\alpha\) equation, remains Lipschitz for all times, (ii) an initially Hölder \(C^{1,\beta}\), \(0\leq\beta<1\), chord arc curve remains in \(C^{1,\beta}\), for all times, and finally, (iii) an initially Hölder \(C^{n,\beta}\), \(n\geq 1\), \(0<\beta<1\), closed chord arc curve remains so for all times. In all these cases the weak Euler-\(\alpha\) and the BR-\(\alpha\) descriptions of the vortex sheet motion are equivalent.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76F02 Fundamentals of turbulence
35Q31 Euler equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baker, A comparison of blob methods for vortex sheet roll-up, J Fluid Mech 547 pp 297– (2006) · Zbl 1082.76078
[2] Bardina, J.; Ferziger, J. H.; Reynolds, W. C. Improved subgrid-scale models for large-eddy simulation. AIAA-1980-1357. American Institute of Aeronautics and Astronautics Fluid and Plasma Dynamics Conference, 13th, Snowmass, Colo., July 14-16, 1980, 10 pp.
[3] Bardos, Global regularity for a Birkhoff-Rott-{\(\alpha\)} approximation of the dynamics of vortex sheets of the 2D Euler equations, Phys D 237 (14) pp 1905– (2008) · Zbl 1143.76384
[4] Bardos, Euler equations of incompressible ideal fluids, Uspekhi Mat Nauk 62 (3(375)) pp 5– (2007) · Zbl 1139.76010
[5] translation in Russian Math Surveys 62 ( 2007), no. 3, 409-451.
[6] Beale, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm Math Phys 94 (1) pp 61– (1984) · Zbl 0573.76029
[7] Beale, High order accurate vortex methods with explicit velocity kernels, J Comput Phys 58 pp 188– (1985) · Zbl 0588.76037
[8] Berselli, Mathematics of large eddy simulation of turbulent flows (2006) · Zbl 1089.76002
[9] Birkhoff, Proceedings of the Symposium on Applied Mathematics pp 55– (1962)
[10] Caflisch, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J Math Anal 20 (2) pp 293– (1989) · Zbl 0697.76029
[11] Cao, On the Clark-{\(\alpha\)} model of turbulence: global regularity and long-time dynamics, J Turbul 6 (2005)
[12] Cao, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun Math Sci 4 (4) pp 823– (2006) · Zbl 1127.35034 · doi:10.4310/CMS.2006.v4.n4.a8
[13] Chemin, Perfect incompressible fluids 14 (1998)
[14] Chen, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys Rev Lett 81 (24) pp 5338– (1998) · Zbl 1042.76525
[15] Chen, The Camassa-Holm equations and turbulence, Phys D 133 (1) pp 49– (1999) · Zbl 1194.76069
[16] Chen, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys Fluids 11 (8) pp 2343– (1999) · Zbl 1147.76357
[17] Chen, Direct numerical simulations of the Navier-Stokes alpha model, Phys D 133 (1) pp 66– (1999) · Zbl 1194.76080
[18] Chepyzhov, On the convergence of solutions of the Leray-{\(\alpha\)} model to the trajectory attractor of the 3D Navier-Stokes system, Discrete Contin Dyn Syst 17 (3) pp 481– (2007) · Zbl 1146.35071
[19] Cheskidov, On a Leray-{\(\alpha\)} model of turbulence, Proc R Soc Lond Ser A Math Phys Eng Sci 461 (2055) pp 629– (2005)
[20] Chorin, Discretization of a vortex sheet, with an example of roll-up, J Comput Phys 13 pp 423– (1973) · Zbl 0273.76022
[21] Clark, Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J Fluid Mech 91 (1) pp 1– (1979) · Zbl 0394.76052
[22] Constantin, An Eulerian-Lagrangian approach to the Navier-Stokes equations, Comm Math Phys 216 (3) pp 663– (2001) · Zbl 0988.76020
[23] Cottet, Vortex methods. Theory and practice (2000)
[24] Cowley, On the formation of Moore curvature singularities in vortex sheets, J Fluid Mech 378 pp 233– (2000)
[25] De Lellis, On admissibility criteria for weak solutions of the Euler equations, Arch Ration Mech Anal
[26] Delort, Existence de nappes de tourbillon en dimension deux, J Amer Math Soc 4 (3) pp 553– (1991) · Zbl 0713.76024
[27] DiPerna, Concentrations in regularizations for 2-D incompressible flow, Comm Pure Appl Math 40 (3) pp 301– (1987) · Zbl 0850.76730
[28] DiPerna, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm Math Phys 108 (4) pp 667– (1987) · Zbl 0626.35059
[29] DiPerna, Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow, J Amer Math Soc 1 (1) pp 59– (1988) · Zbl 0707.76026
[30] Duchon, Global vortex sheet solutions of Euler equations in the plane, J Differential Equations 73 (2) pp 215– (1988) · Zbl 0667.35046
[31] Evans, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J Amer Math Soc 7 (1) pp 199– (1994) · Zbl 0802.35120
[32] Foias, The Navier-Stokes-alpha model of fluid turbulence, Phys D 152 pp 505– (2001) · Zbl 1037.76022
[33] Foias, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J Dynam Differential Equations 14 (1) pp 1– (2002) · Zbl 0995.35051
[34] Folland, Real analysis. Modern techniques and their applications (1999) · Zbl 0924.28001
[35] Geurts, Regularization modeling for large-eddy simulation, Phys Fluids 15 (1) pp L13– (2003)
[36] Geurts, Leray and LANS-{\(\alpha\)} modelling of turbulent mixing, J Turbul 7 (2006)
[37] Geurts, Regularization modeling for large-eddy simulation of homogeneous isotropic decaying turbulence, J Phys A 41 (34) (2008) · Zbl 1195.76195
[38] Holm, Variational principles for Lagrangian-averaged fluid dynamics, J Phys A 35 (3) pp 679– (2002) · Zbl 1040.76054
[39] Holm, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv Math 137 (1) pp 1– (1998)
[40] Holm, Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys Rev Lett 80 (19) pp 4173– (1998)
[41] Holm, Modeling mesoscale turbulence in the barotropic double-gyre circulation, J Phys Oceanogr 33 (11) pp 2355– (2003)
[42] Holm, Euler-alpha and vortex blob regularization of vortex filament and vortex sheet motion, J Fluid Mech 555 pp 149– (2006) · Zbl 1090.76015
[43] Holm, Computational models of turbulence: the LANS-alpha model and the role of global analysis, SIAM News 38 (7) (2005)
[44] Available online at: http://www.siam.org/news/news.php?id=154.
[45] Ilyin, A Modified-Leray-{\(\alpha\)} subgrid scale model of turbulence, Nonlinearity 19 (4) pp 879– (2006)
[46] Khouider, An inviscid regularization for the surface quasi-geostrophic equation, Comm Pure Appl Math 61 (10) pp 1331– (2008) · Zbl 1149.35018
[47] Krasny, Desingularization of periodic vortex sheet roll-up, J Comput Phys 65 (2) pp 292– (1986) · Zbl 0591.76059
[48] Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J Fluid Mech 167 pp 65– (1986) · Zbl 0601.76038
[49] Krasny, Computation of vortex sheet roll-up in the Trefftz plane, J Fluid Mech 184 pp 123– (1987)
[50] Layton, A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions, Appl Math Lett 16 (8) pp 1205– (2003) · Zbl 1039.76027
[51] Layton, On a well-posed turbulence model, Discrete Contin Dyn Syst Ser B 6 (1) pp 111– (2006) · Zbl 1089.76028
[52] Lebeau, Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d, ESAIM Control Optim Calc Var 8 pp 801– (2002)
[53] Lewandowski, Vorticities in a LES model for 3D periodic turbulent flows, J Math Fluid Mech 8 (3) pp 398– (2006) · Zbl 1099.76027
[54] Linshiz, Analytical study of certain magnetohydrodynamic-alpha models, J Math Phys 48 (6) (2007) · Zbl 1144.81378
[55] Liu, Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, Comm Pure Appl Math 48 (6) pp 611– (1995)
[56] Liu, Convergence of the point vortex method for 2-D vortex sheet, Math Comp 70 (234) pp 595– (2001) · Zbl 0977.76069
[57] Lopes Filho, Numerical evidence of nonuniqueness in the evolution of vortex sheets, M2AN Math Model Numer Anal 40 (2) pp 225– (2006) · Zbl 1124.76010
[58] Lopes Filho, A criterion for the equivalence of the Birkhoff-Rott and Euler descriptions of vortex sheet evolution, Trans Amer Math Soc 359 (9) pp 4125– (2007) · Zbl 1112.76013
[59] Lopes Filho, Existence of vortex sheets with reflection symmetry in two space dimensions, Arch Ration Mech Anal 158 (3) pp 235– (2001) · Zbl 1058.35176
[60] Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ Math J 42 (3) pp 921– (1993) · Zbl 0791.76015
[61] Majda, Vorticity and incompressible flow 27 (2002)
[62] Marchioro, Mathematical theory of incompressible nonviscous fluids 96 (1994) · Zbl 0789.76002 · doi:10.1007/978-1-4612-4284-0
[63] Marsden, The anisotropic Lagrangian averaged Euler and Navier-Stokes equations, Arch Ration Mech Anal 166 (1) pp 27– (2003) · Zbl 1020.76014
[64] Meiron, Analytic structure of vortex sheet dynamics. I. Kelvin-Helmholtz instability, J Fluid Mech 114 pp 283– (1982) · Zbl 0476.76031
[65] Mohseni, Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence, Phys Fluids 15 (2) pp 524– (2003) · Zbl 1185.76263
[66] Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc Roy Soc London Ser A 365 (1720) pp 105– (1979)
[67] Oliver, The vortex blob method as a second-grade non-Newtonian fluid, Comm Partial Differential Equations 26 (1) pp 295– (2001) · Zbl 0983.35106
[68] Pullin, Mathematical aspects of vortex dynamics (Leesburg, VA, 1988) pp 97– (1989)
[69] Rott, Diffraction of a weak shock with vortex generation, J Fluid Mech 1 pp 111– (1956) · Zbl 0071.20502
[70] Saffman, Vortex dynamics (1992)
[71] Saffman, Vortex interactions, Ann Rev Fluid Mech 11 pp 95– (1979) · Zbl 0434.76001
[72] Scheffer, An inviscid flow with compact support in space-time, J Geom Anal 3 (4) pp 343– (1993) · Zbl 0836.76017 · doi:10.1007/BF02921318
[73] Schochet, The weak vorticity formulation of the 2D Euler equations and concentration-cancellation, Comm Partial Differential Equations 20 (5) pp 1077– (1995) · Zbl 0822.35111
[74] Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm Pure Appl Math 49 (9) pp 911– (1996) · Zbl 0862.35092
[75] Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm Pure Appl Math 50 (12) pp 1261– (1997) · Zbl 0909.35109
[76] Sulem, Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability, Comm Math Phys 80 (4) pp 485– (1981) · Zbl 0476.76032
[77] Taniuchi, Uniformly local Lp estimate for 2-D vorticity equation and its application to Euler equations with initial vorticity in bmo, Comm Math Phys 248 (1) pp 169– (2004) · Zbl 1056.76009
[78] Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann Sci École Norm Sup (4) 32 (6) pp 769– (1999) · Zbl 0938.35128
[79] Vishik, Trajectory attractor approximations of the 3D Navier-Stokes system by a Leray-{\(\alpha\)} model, Dokl Akad Nauk 400 (5) pp 583– (2005)
[80] translation in Dokl Math 71 ( 2005), 92-95.
[81] Watson, A treatise on the theory of Bessel functions (1995) · Zbl 0849.33001
[82] Wu, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) pp 233– (2002)
[83] Wu, Mathematical analysis of vortex sheets, Comm Pure Appl Math 59 (8) pp 1065– (2006) · Zbl 1169.76007
[84] Yudovich, Non-stationary flow of an ideal incompressible liquid, Zh Vychisl Mat Mat Fiz 3 (6) pp 1032– (1963) · Zbl 0147.44303
[85] translation in Comput Math Math Phys 3 ( 1963), 1407-1456.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.