×

Optimal suppression of a separation bubble in a laminar boundary layer. (English) Zbl 1460.76198

Summary: By means of nonlinear optimization, we seek the velocity disturbances at a given upstream position that suppress a laminar separation bubble as effectively as possible. Both steady and unsteady disturbances are examined and compared. For steady disturbances, an informed guess based on linear analysis of transient perturbation growth leads to significant delay of separation and serves as a starting point for the nonlinear optimization algorithm. It is found that the linear analysis largely captures the suppression of the separation bubble attained by the nonlinear optimal perturbations. The mechanism of separation delay is the generation of a mean flow distortion by nonlinear interactions during the perturbation growth. The mean flow distortion enhances the momentum close to the wall, counteracting the deceleration of the flow in that region. An examination of the effect of the disturbance spanwise wavenumber reveals that perturbations maximizing the mean flow distortion also approximately maximize the peak wall pressure, which is beneficial for lowering form drag. The optimal spanwise wavenumber leading to maximal peak wall pressure is significantly larger than the one maximizing the shift in separation onset. For unsteady disturbances, the mechanism of separation delay relies on enhancing wall-normal momentum transfer by triggering instabilities of the separated shear layer. It is found that Tollmien-Schlichting waves obtained from linear stability theory provide accurate estimates of the nonlinearly optimal disturbances. Comparison of optimal steady and unsteady perturbations reveals that the latter are able to obtain a higher time-averaged peak wall pressure.

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D55 Flow control and optimization for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdessemed, N., Sherwin, S. J. & Theofilis, V.2009Linear instability analysis of low-pressure turbine flows. J. Fluid Mech.628, 57-83. · Zbl 1181.76066
[2] Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P.2006Steady solutions of the Navier-Stokes equations by selective frequency damping. Phys. Fluids18, 068102.
[3] Alam, M. & Sandham, N. D.2000Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech.410, 1-28. · Zbl 0959.76035
[4] Andersson, P., Berggren, M. & Henningson, D. S.1999Optimal disturbances and bypass transition in boundary layers. Phys. Fluids11, 134-150. · Zbl 1147.76308
[5] Boiko, A. V., Dovgal, A. V. & Hein, S.2008Control of a laminar separating boundary layer by induced stationary perturbations. Eur. J. Mech. (B/Fluids)27, 466-476. · Zbl 1178.76008
[6] Butler, K. M. & Farrell, B. F.1992Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A4, 1637-1650.
[7] Cho, M., Choi, S. & Choi, H.2016Control of flow separation in a turbulent boundary layer using time-periodic forcing. Trans. ASME: J. Fluids Engng138, 101204.
[8] Cossu, C. & Brandt, L.2002Stabilization of Tollmien-Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids14, L57-L60. · Zbl 1185.76090
[9] Ellingsen, T. & Palm, E.1975Stability of linear flow. Phys. Fluids18, 487-488. · Zbl 0308.76030
[10] Fransson, J. H. M. & Talamelli, A.2012On the generation of steady streamwise streaks in flat-plate boundary layers. J. Fluid Mech.698, 211-234. · Zbl 1250.76055
[11] Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C.2006Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett.96, 064501.
[12] Greenblatt, D. & Wygnanski, I. J.2000The control of flow separation by periodic excitation. Prog. Aerosp. Sci.36, 487-545.
[13] Gustavsson, L. H.1991Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech.224, 241-260. · Zbl 0717.76044
[14] Hack, M. J. P. & Moin, P.2017Algebraic disturbance growth by interaction of Orr and lift-up mechanisms. J. Fluid Mech.829, 112-126. · Zbl 1460.76197
[15] Hack, M. J. P. & Zaki, T. A.2015Modal and non-modal stability of boundary layers forced by spanwise wall oscillations. J. Fluid Mech.778, 389-427. · Zbl 1382.76110
[16] Karp, M. & Hack, M. J. P.2018Transition to turbulence over convex surfaces. J. Fluid Mech.855, 1208-1237. · Zbl 1415.76275
[17] Kerho, M., Hutcherson, S., Blackwelder, R. F. & Liebeck, R. H.1993Vortex generators used to control laminar separation bubbles. J. Aircraft30, 315-319.
[18] Kim, J. & Moin, P.1985Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys.59, 308-323. · Zbl 0582.76038
[19] Kotapati, R. B., Mittal, R., Marxen, O., Ham, F., You, D. & Cattafesta, L. N.2010Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow. J. Fluid Mech.654, 65-97. · Zbl 1193.76049
[20] Landahl, M. T.1980A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.98, 243-251. · Zbl 0428.76049
[21] Levinsky, E. S. & Schappelle, R. H.1975Analysis of separation control by means of tangential blowing. J. Aircraft12, 18-26.
[22] Mao, X., Zaki, T. A., Sherwin, S. J. & Blackburn, H. M.2017Transition induced by linear and nonlinear perturbation growth in flow past a compressor blade. J. Fluid Mech.820, 604-632. · Zbl 1383.76191
[23] Marxen, O., Kotapati, R. B., Mittal, R. & Zaki, T.2015Stability analysis of separated flows subject to control by zero-net-mass-flux jet. Phys. Fluids27, 024107.
[24] Marxen, O., Lang, M., Rist, U., Levin, O. & Henningson, D. S.2009Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J. Fluid Mech.634, 165-189. · Zbl 1183.76720
[25] Marxen, O. & Rist, U.2010Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech.660, 37-54. · Zbl 1205.76128
[26] Marxen, O., Rist, U. & Wagner, S.2004Effect of spanwise-modulated disturbances on transition in a separated boundary layer. AIAA J.42, 937-944.
[27] Na, Y. & Moin, P.1998Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech.374, 379-405. · Zbl 0974.76035
[28] Pearcey, H. H.1961Shock-induced separation and its prevention. In Boundary Layer and Flow Control, Its Principle and Applications (ed. Lachmann, G. V.). Pergamon Press.
[29] Polak, E. & Ribière, G.1969Note sur la convergence de directions conjugées. Rev. Fr. Inform. Rech. O.16, 35-43. · Zbl 0174.48001
[30] Pujals, G., Depardon, S. & Cossu, C.2010Drag reduction of a 3D bluff body using coherent streamwise streaks. Exp. Fluids49, 1085-1094.
[31] Ran, W., Zare, A., Hack, M. J. P. & Jovanovic, M. R.2019Modeling mode interactions in boundary layer flows via the parabolized Floquet equations. Phys. Rev. Fluids4, 023901.
[32] Rist, U. & Augustin, K.2006Control of laminar separation bubbles using instability waves. AIAA J.44, 2217-2223.
[33] Rosenfeld, M., Kwak, D. & Vinokur, M.1991A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems. J. Comput. Phys.94, 102-137. · Zbl 0718.76079
[34] Schmid, P. J. & Henningson, D. S.2001Stability and Transition in Shear Flows. Springer. · Zbl 0966.76003
[35] Schubauer, G. B. & Spangenberg, W. G.1960Forced mixing in boundary layers. J. Fluid Mech.8, 10-32. · Zbl 0092.20001
[36] Seo, J. H., Cadieux, F., Mittal, R., Deem, E. & Cattafesta, L.2018Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble. Phys. Rev. Fluids3, 033901.
[37] Theofilis, V., Hein, S. & Dallmann, U.2000On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A358, 3229-3246. · Zbl 1106.76363
[38] Xu, H., Mughal, S. M., Gowree, E. R., Atkin, C. J. & Sherwin, S. J.2017Destabilisation and modification of Tollmien-Schlichting disturbances by a three-dimensional surface indentation. J. Fluid Mech.819, 592-620. · Zbl 1383.76296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.