×

The effect of thermal radiation on the heat transfer characteristics of lid-driven cavity with a moving surface. (English) Zbl 1356.80007

Summary: Purpose{ } - There are industrial applications for varying speed lid-driven flow and heat transfer such as the float glass process where the glass film stretches or thickens depending on the desired thickness. Hence the tin cavity underneath or the nitrogen cavity above is being driven by a variable speed. The purpose of this paper is to simulate such behavior. { }Design/methodology/approach{ } - Numerical solution of variable speed lid-driven cavity is carried out with thermal radiation being considered using control volume approach and staggered grid and applying the SIMPLE algorithm. Transient simulation is used for 2D model in the present study. Second order upwind schemes were used for discretization of momentum, energy equations and time. { }Findings{ } - Under laminar conditions, thermal radiation plays a significant role in the heat transfer characteristics of the lid-driven cavity. This effect is more significant for blackbody radiation and decreases as the surface emissivity decreases. Nusselt number (Nu) behavior lies between these two limiting case profiles considering constant speed profiles of both maximum and minimum lid velocities, respectively. In addition, local Nu values at the tip where higher than those at the top of the cavity that is stagnant. { }Research limitations/implications{ } - The study is limited to laminar flow case. { }Practical implications{ } - The applications of this study can be found in float glass process where the glass film stretches or thickens depending on the desired thickness. Hence the tin cavity underneath or the nitrogen cavity above is being driven by a variable speed. Another application involves casting of plastic films. The molten polymer leaves the die with a considerable thickness and high temperature. The film is then trenched to reach its final thickness. In this case, usually there is no actual cavity above or below the film but one can approximate the problem as such. Other similar applications do exist in food drying and processing where the conveyer belt is in portions and their speed may not be the same in different section of the processing oven. { }Originality/value{ } - To the best of the authors knowledge, no study in the literature addressed the effect of thermal radiation in lid-driven cavities with variable speed

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

FLUENT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahlman, D. and Soderlund, F. (2002), ”Proper orthogonal decomposition for time-dependent lid-driven cavity flows”, Numerical Heat Transfer, Part B (Fundamentals), Vol. 42 No. 4, pp. 285-306. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[2] Al-Amiri, A.M. , Khanafer, K.M. and Ioan, Pop (2007), ”Numerical simulation of combined thermal and mass transport in a square lid-driven cavity”, International Journal of Thermal Sciences, Vol. 46 No. 7, pp. 662-671. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[3] Babu, V. and Korpela, S.A. (1994), ”Numerical solution of the incompressible three-dimensional Navier-Stokes equations”, Computers & Fluids, Vol. 23 No. 5, pp. 675-691. , · Zbl 0811.76041 · doi:10.1108/HFF-06-2012-0136
[4] Bell, B.C. and Surana, K.S. (1996), ”Space-time coupled p-version least squares finite element formulation for unsteady two-dimensional Navier-Stokes equations”, International Journal for Numerical Methods in Engineering, Vol. 39 No. 15, pp. 2593-2618. , · Zbl 0880.76037 · doi:10.1108/HFF-06-2012-0136
[5] Chen, Ping-Hei. (1996), ”Effect of the aspect ratio on the transient mass/heat transfer in an open cavity”, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch’eng Hsuch K’an, Vol. 19 No. 2, pp. 273-285.
[6] Cheng, C. and Chen, C. (2005), ”Buoyancy-induced periodic flow and heat transfer in lid-driven cavities with different cross-sectional shapes”, International Journal of Heat and Mass Transfer, Vol. 32 Nos 3-4, pp. 483-490. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[7] Chin-Lung, C. and Chin-Hsiang, C. (2006), ”Numerical study of flow and thermal behavior of lid-driven flows in cavities of small aspect ratios”, International Journal for Numerical Methods in Fluids, Vol. 52 No. 7, pp. 785-799. , · Zbl 1370.76119 · doi:10.1108/HFF-06-2012-0136
[8] Chiang, T.P. , Hwang, R.R. and Sheu, W.H. (1998), ”Some physical insights inside a lid-driven rectangular cavity”, Journal of the Chinese Society of Mechanical Engineers, Vol. 19 No. 2, pp. 231-236.
[9] Chiang, T.P. , Hwang, R.R. and Sheu, W.H. (1996), ”Finite volume analysis of spiral motion in a rectangular lid-driven cavity”, International Journal for Numerical Methods in Fluids, Vol. 23 No. 4, pp. 325-346. , · Zbl 0863.76049 · doi:10.1108/HFF-06-2012-0136
[10] Cortes, A.B. and Miller, J.D. (1994), ”Numerical experiments with the lid driven cavity flow problem”, Computers and Fluids, Vol. 23 No. 8, pp. 1005-1027. , · Zbl 0816.76065 · doi:10.1108/HFF-06-2012-0136
[11] Elman, H.C. , Howle, V. , Shadid, J.N. and Tuminaro, R.S. (2003), ”A parallel block multi-level preconditioner for the 3D incompressible Navier - Stokes equations”, Journal of Computational Physics, Vol. 187, pp. 504-523. , · Zbl 1061.76058 · doi:10.1108/HFF-06-2012-0136
[12] Iwatsu, R. and Hyun, J.M. (1995), ”Three-dimensional driven-cavity flows with a vertical temperature gradient”, International Journal of Heat and Mass Transfer, Vol. 38 No. 18, pp. 3319-3328. , · Zbl 0925.76920 · doi:10.1108/HFF-06-2012-0136
[13] Lee, S. and Chen, C. (1996), ”Finite element solution of laminar and turbulent mixed convection in a driven cavity”, International J Numerical Methods in Fluids, Vol. 23 No. 1, pp. 47-64. , · Zbl 0865.76040 · doi:10.1108/HFF-06-2012-0136
[14] Leriche, E. and Gavrilaki, S. (2002), ”Direct numerical simulation of the flow in a lid-driven cubical cavity”, Physics of Fluids, Vol. 12 No. 6, pp. 1363-1376. , · Zbl 1149.76452 · doi:10.1108/HFF-06-2012-0136
[15] Mansour, R.B. and Viskanta, R. (1994), ”Shear-opposed mixed-convection flow and heat transfer in a narrow vertical cavity”, International Journal of Heat and Fluid Flow, Vol. 15 No. 6, pp. 462-469. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[16] Migeon, C. (2002), ”Details on the start-up development of the Taylor-Gortler-like vortices inside a square-section lid-driven cavity for 1,000 [less-than or equal to] Re [less-than or equal to] 3,200”, Experiments in Fluids, Vol. 33 No. 4, pp. 594-602. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[17] Mohamed, A.A. and Viskanta, R. (1995), ”Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid”, Applied Mathematical Modeling, Vol. 19 No. 8, pp. 456-472. , · Zbl 0832.76060 · doi:10.1108/HFF-06-2012-0136
[18] Patankar, S.V. (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Company, Washington, DC. · Zbl 0521.76003
[19] Peng, Y.F. , Shiau, Y.H. and Hwang, R.R. (2003), ”Transition in a 2-D lid-driven cavity flow”, Computers & Fluids, Vol. 32 No. 3, pp. 337-352. , · Zbl 1009.76513 · doi:10.1108/HFF-06-2012-0136
[20] Pontaza, J.P. and Reddy, J.N. (2004), ”Space - time coupled spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equations”, J Computational Physics, Vol. 197 No. 2, pp. 418-459. , · Zbl 1106.76403 · doi:10.1108/HFF-06-2012-0136
[21] Prasad, A.K. and Koseff, J.R. (1996), ”Combined forced and natural convection heat transfer in a deep lid-driven cavity flow”, Int. J. Heat and Fluid Flow, Vol. 17 No. 5, pp. 460-467. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[22] Prieto, M. , Díaz, J. and Egusquiza, E. (2002), ”Analysis of the fluid-dynamic and thermal behaviour of a tin bath in float glass manufacturing”, Int. J. Therm. Sci, Vol. 41 No. 4, pp. 348-359. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[23] Ramaswamy, B. and Jue, T.C. (1991), ”A segregated finite element formulation of Navier-Stokes equations under laminar conditions”, Finite Elements in Analysis and Design, Vol. 9 No. 4, pp. 257-270. · Zbl 0745.76043 · doi:10.1108/HFF-06-2012-0136
[24] Robert, S. and John, H. (2002), Thermal Radiation Heat Transfer, 4th ed., Taylor and Francis, NY.
[25] Sahin, M. and Owens, R.G. (2003), ”A novel fully implicit finite volume method applied to the lid-driven cavity problemart I: High Reynolds number flow calculations”, Int. J. Numer. Meth. Fluids, Vol. 42 No. 1, pp. 57-77. , · Zbl 1078.76046 · doi:10.1108/HFF-06-2012-0136
[26] Šarler, B. and Kuhn, G. (1999), ”Primitive variable dual reciprocity boundary element method solution of incompressible Navier-Stokes equations”, Engineering Analysis with Boundary Elements, Vol. 23 Nos 5-6, pp. 443-455. , · Zbl 0956.76058 · doi:10.1108/HFF-06-2012-0136
[27] Sriram, S. , Deshpande, A.P. and Pushpavanam, P. (2006), ”Analysis of spatiotemporal variations and flow structures in a periodically driven cavity”, ASME Journal of Fluids Engineering, Vol. 128 No. 3, pp. 413-420. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[28] Wendl, M.C. and Agarwal, R.K. (1996), ”Application of a new incompressible flow algorithm to flows in a variety of shear-driven cavity configurations”, Proceedings of the 1996 ASME Fluids Engineering Division Summer Meeting, Part 3 (of 3), San Diego, CA, 7-11 July.
[29] Xundan, S. and Khodadadi, J.M. (2005), ”Fluid Flow and Heat Transfer in a Lid-Driven Cavity Due to an Oscillating Thin Fin: Transient Behavior”, J. Heat Transfer, Vol. 126 No. 6, pp. 924-930. · Zbl 1188.76199 · doi:10.1108/HFF-06-2012-0136
[30] Xundan, S. and Khodadadi, J.M. (2004), ”Fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin: Transient behavior”, Journal of Heat Transfer, Vol. 126 No. 6, pp. 924-930. , · Zbl 1188.76199 · doi:10.1108/HFF-06-2012-0136
[31] Mahapatra, S.K. , Nanda, P. and Sarkar, A. (2006), ”Interaction of mixed convection in two-sided lid driven differentially heated square enclosure with radiation in presence of participating medium”, Heat and Mass Transfer, Vol. 42 No. 8, pp. 739-757. , · Zbl 1356.80007 · doi:10.1108/HFF-06-2012-0136
[32] Mahapatra, S.K. , Sen, S. and Sarkar, A. (1999), ”Interaction of surface radiation and variable property natural convection in a differentially heated square cavity-a finite element analysis”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 9 No. 4, pp. 423-443. , · Zbl 0943.76076 · doi:10.1108/HFF-06-2012-0136
[33] ANSYS Inc (2009) Ansys FLUENT Users Guide 12.1, ANSYS Inc, Pittsburg, PA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.