×

Nature’s drawing: problems and resolutions in the mathematization of motion. (English) Zbl 1274.01029

Summary: The mathematical nature of modern science is an outcome of a contingent historical process, whose most critical stages occurred in the seventeenth century. ‘The mathematization of nature’ [A. Koyré, From the closed world to the infinite universe. Baltimore: Johns Hopkins Press (1957)] is commonly hailed as the great achievement of the ‘scientific revolution’, but for the agents affecting this development it was not a clear insight into the structure of the universe or into the proper way of studying it. Rather, it was a deliberate project of great intellectual promise, but fraught with excruciating technical challenges and unsettling epistemological conundrums. These required a radical change in the relations between mathematics, order and physical phenomena and the development of new practices of tracing and analyzing motion. This essay presents a series of discrete moments in this process. For mediaeval and Renaissance philosophers, mathematicians and painters, physical motion was the paradigm of change, hence of disorder, and ipso facto available to mathematical analysis only as idealized abstraction. Kepler and Galileo boldly reverted the traditional presumptions: for them, mathematical harmonies were embedded in creation; motion was the carrier of order; and the objects of mathematics were mathematical curves drawn by nature itself. Mathematics could thus be assigned an explanatory role in natural philosophy, capturing a new metaphysical entity: pure motion. Successive generations of natural philosophers from Descartes to Huygens and Hooke gradually relegated the need to legitimize the application of mathematics to natural phenomena and the blurring of natural and artificial this application relied on. Newton finally erased the distinction between nature’s and artificial mathematics altogether, equating all of geometry with mechanical practice.

MSC:

01A45 History of mathematics in the 17th century
00A35 Methodology of mathematics
01A40 History of mathematics in the 15th and 16th centuries, Renaissance
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alberti, L. B. (1972 [1435]). On painting and on sculpture: The Latin texts of de pictura and de statua (C. Grayson, Trans. and Ed.). London: Phaidon.
[2] Alpers S. (1984) The art of describing: Dutch art in the seventeenth century. The University of Chicago Press, Chicago
[3] Bertoloni Meli D. (1992) Guidobaldo dal Monte and the Archimedean revival. Nuncius 7: 3–34
[4] Bertoloni Meli D. (2006) Thinking with objects: The transformation of mechanics in the seventeenth century. The Johns Hopkins University Press, Baltimore · Zbl 1101.01004
[5] Chen-Morris Raz D. (2001) Optics, imagination, and the construction of scientific observation in Kepler’s new science. The Monist 84.4: 453–486
[6] Chen-Morris Raz D. (2009) From emblems to diagrams: Kepler’s new pictorial language of scientific representation. Renaissance Quarterly 62: 134–170
[7] Coelho, V. (eds) (1992) Music and science in the age of Galileo. Kluwer Academic Publishers, Dordrecht
[8] Dascal M. (2000) Leibniz and epistemological diversity. In: Lamarra A., Palaia R. (eds) Unita e Molteplicita nel Pensiero Filosofico e Scientifico di Leibniz. Roma, Leo S. Olschki Editore, pp 15–37
[9] De Gandt F. (1995) Force and geometry in Newton’s principia. Princeton University Press, Princeton · Zbl 0830.01007
[10] Dear P. (1995) Discipline & experience: The mathematical way in the scientific revolution. University of Chicago Press, Chicago · Zbl 0997.01519
[11] Descartes, R. (1659–1661). Geometria, à Renato Des Cartes anno 1637 gallicè edita.... Amstelædami: Apud Ludovicum & Danielem Elzevirios.
[12] Descartes, R. (1824–1826). Oeuvres de Descartes. (V. Cousin., Ed.). Paris.
[13] Descartes R. (1983) Principles of philosophy (Principia philosophiæ, 1644) (V. R. Miller & R. P. Miller, Trans.). Reidel, Dordrecht
[14] Descartes R. (1985) The philosophical writings of descartes (J. Cottingham, R. Stoothof, & D. Murdoch, Trans.). Cambridge University Press, Cambridge
[15] Drabkin I. E. (1950) Aristotle’s wheel: Notes on the history of a paradox. Osiris 9: 162–198 · Zbl 0041.33717
[16] Drake S., Drabkin I. E. (1969) Mechanics in sixteen-century Italy. University of Wisconsin Press, Madison
[17] Edgerton, S. (1984). Galileo, Florentine ’disegno,’ and the ’strange spottedness of the moon’. Art Journal (Fall 1984), 225–232.
[18] Feldhay R. (1995) Galileo and the church. Cambridge University Press, Cambridge · Zbl 1044.01504
[19] Field J. V. (1988) Kepler’s geometrical cosmology. The Athlone Press, London · Zbl 1091.01500
[20] Freedberg D. (2002) The Eye of the lynx: Galileo, his friends and the beginnings of modern natural history. University of Chicago Press, Chicago
[21] Gal O. (2002) Meanest foundations and nobler superstructures: Hooke, Newton and the compounding of the celestiall motions of the planetts. Kluwer Academic Publishers, Dordrecht
[22] Gal, O. (Forthcoming). From divine order to human approximation: Mathematics in Baroque science.
[23] Gal O., Chen-Morris R. D. (2005) The archaeology of the inverse square law. Part I. Metaphysical images and mathematical practices. History of Science 43(4): 391–414
[24] Gal O., Chen-Morris R. D. (2006) The archaeology of the inverse square law. Part II. The use and non-use of mathematics. History of Science 44(1): 49–68
[25] Gal O., Chen-Morris R.D. (2010) Empiricism without the senses: How the instrument replaced the eye. In: Wolfe C., Gal O. (eds) The body as object and instrument of knowledge: Embodied empiricism in early modern science. Springer Verlag, Dordrecht, pp 121–148
[26] Gal, O., & Chen-Morris, R. D. (2010). Baroque optics and the disappearance of the observer: From Kepler’s optics to descartes’ doubt. Journal for the History of Ideas, 191–217.
[27] Galilei, G. (1699). Discursus et demonstrationes mathematicæ, circa duas novas scientias pertinentes ad mechanicam & motum localem.... Lugduni Batavorum: Apud Fredericum Haaring, et Davidem Severinum.
[28] Galilei G. (1953 [1632]). Dialogue concerning the two chief world systems–Ptolemaic and copernican (S. Drake, Trans.). Berkeley: University of California Press. · Zbl 0052.00205
[29] Galilei, G. (1954 [1638]). Dialogues concerning two new sciences (H. Crew & A. de Silvio, Trans.). New York: Dover Publications.
[30] Galluzzi P. (1979) Momento: Studi Galileiani. Edizioni dell’Ateneo & Bizzarri, Roma
[31] Gaukroger S. (1995) Descartes: An intellectual biography. Clarendon Press, Oxford
[32] Hooke R. (1665) Micrographia. Jo. Martin and Jo. Allestry, London
[33] Hooke R. (1678) Lectures De potentia restitutiva or of spring. John Martin, London
[34] Huygens, C. (1888–1950). Oeuvres complètes. La Haye: Société Hollandaise des Sciences. · JFM 28.0008.01
[35] Huygens, C. (1966). Horologium Oscilatorium. Paris, 1673. Facsimile reprint by Bruxelles: Culture et Civilisation.
[36] Huygens C. (1986) The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks (Horologium Oscilatorium, 1673) (R. J. Blackwell, Trans.). Iowa State University Press, Ames
[37] Jones M. (2006) The good life in the scientific revolution: Descartes, Pascal, Leibniz and the cultivation of virtue. University of Chicago Press, Chicago · Zbl 1247.01014
[38] Kemp M. (1981) Leonardo da Vinci: the marvellous works of nature and man. Harvard University Press, Cambridge, MA
[39] Kepler, J. (1966 [1611]). A new year’s gift, or on the six-cornered snowflake (C. Hardie, Ed. and Trans.). Oxford: Clarendon Press.
[40] Kepler, J. (1997 [1619]). The harmony of the world (A. J. Aiton et al., Trans and Ann.). Philadelphia: American Philosophical Society.
[41] Kepler, J. (1937). Gesammelte werke 1571–1630 (W. von Dyck & M. Caspar, Eds.). München: C. H. Beck. · JFM 63.0013.04
[42] Kepler, J. (1981 [1596]). Mysterium cosmographicum, the secret of the universue (A. M. Duncan, Trans.). New York: Abaris Books.
[43] Kepler, J. (1992 [1609]). New astronomy (W. H. Donahue, Trans.). Cambridge: Cambridge University Press.
[44] Kepler, J. (2000 [1604]). Optics: Paralipomena to witelo and the optical part of astronomy (W. H. Donahue, Trans.). Santa Fe, NM: Green Lion Press.
[45] Koyré A. (1957) From the closed world to the infinite universe. Johns Hopkins Press, Baltimore
[46] Kusukawa S., Maclean I. (2006) Transmitting knowledge: Words, images, and instruments in early modern Europe. Oxford University Press, Oxford
[47] Landes D. S. (1983) Revolution in time: Clocks and the making of the modern world. The Belknap Press of Harvard University Press, Cambridge, MA
[48] Lefèvre, W. (eds) (2004) Picturing machines 1400–1700. MIT Press, Cambridge, MA
[49] Lefèvre, W. (eds) et al (2003) The power of images in early modern sciences. Birkhäuser verlag, Basel · Zbl 1140.91408
[50] Lennox J. (1985) Aristotle, Galileo and the mixed sciences. In: Wallace W. (eds) Reinterpreting Galileo. Catholic University of America Press, Washington, DC, pp 29–51
[51] Leonardo da Vinci. (1938). The notebooks of Leonardo da Vinci (E. MacCurdy, Trans. and Ed.). London. · JFM 23.0007.01
[52] Lüthy, C. (eds) et al (2001) Late medieval and early modern corpuscular matter theories. Leiden, Brill
[53] Machamer, P. (eds) (1998) The Cambridge companion to Galileo. Cambridge University Press, Cambridge · Zbl 1044.01508
[54] Maestlin, M. (1582). De Astronomiae Principalibus et Primis Fondamentis Disputatio. Heidelberg.
[55] Mahoney, M. (1980). Christiaan huygens: The measurement of time and of longitude at sea. In H. J. M. Bos, et al. (Eds.), Studies on Christiaan Huygens (pp. 234–270). Lisse: Swets & Zeitlinger.
[56] Mahoney, M. (1990). Infinitesimals and transcendent relations: the mathematics of motion in the late seventeenth century. In D. C. Lindberg & R. S. Westman (Eds.), Reappraisals of the Scientific Revolution (pp. 461–492). Cambridge: Cambridge University Press.
[57] Mahoney, M. (1998). The mathematical realm of nature. In D. Garber & M. Ayers (Eds.), The Cambridge history of seventeenth century philosophy (pp. 702–755). Cambridge: Cambridge University Press.
[58] Mahoney, M. (2000). Huygens and the pendulum: From device to mathematical relation. In E. Grosholz & H. Breger (Eds.), The Growth of mathematical knowledge (pp. 17–39). Dordrecht: Kluwer Academic Publishers. · Zbl 0951.00503
[59] Mahoney, M. (2004). Drawing mechanics. In W. Lefevre (Ed.). Picturing machines, 1400–1700. Cambridge, MA: MIT Press.
[60] Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, New York · Zbl 0939.01004
[61] Naylor, R. (2003). Galileo, Copernicanism and the origins of the new science of motion. The British Journal for the History of Science, 36, 151–181.
[62] Newton I. (1960) The correspondence of Isaac Newton (H. Turnbull, Ed). Cambridge University Press, Cambridge
[63] Newton, I. (1999 [1687–1726]). The Principia (I. B. Cohen & A. Whitman, Trans. and Ann.). Berkeley: University of California Press.
[64] Oresme N. (1968) Nicole Oresme and the medieval geometry of qualities and motions ... tractatus de configurationibus qualitatum et motuum (M. Clagett, Ed. and Trans.). The University of Wisconsin Press, Madison · Zbl 0192.32001
[65] Oresme N. (1971) Nicole Oresme and the kinematics of circular motion: Tractatus de commensurabilitate vel incommensurabilitate motuum celi (E. Grant, Ed. and Trans.). The University of Wisconsin Press, Madison · Zbl 0223.01006
[66] Panofsky E. (1954) Galileo as a critic of the arts. Martinus Nijhoff, The Hague
[67] E. (1980) Natural history (W. H. S Johns, Trans.). Harvard University Press, Cambridge MA
[68] Reeves E. (1997) Painting the heavens: Art and science in the age of Galileo. Princeton University Press, Princeton
[69] Regiomontanus, J. (1533). De triangulis omnimodis libri quinque. Nuremberg.
[70] Renn, J., Damerow, P., & Riger, S. (2000). Hunting the white elephant: When and how did Galileo discover the law of fall?. Science in Context, 13, 299–423.
[71] Shea, W. R. (Ed.). (1983). Nature mathematized. Dordrecht: Reidel.
[72] Stephenson B. (1994) Kepler’s Physicial Astronomy. Princeton University Press, Princeton · Zbl 0802.01013
[73] Stephenson B. (1994) The Music of the Heavens: Kepler’s Harmonic Astronomy. Princeton University Press, Princeton · Zbl 0820.01006
[74] Sutton J. (1998) Philosophy and memory traces: Descartes to connectionism. Cambridge University Press, Cambridge
[75] Taimina, D. Exploring linkages. http://kmoddl.library.cornell.edu/linkages/ .
[76] Tartaglia, N. (1537). Nova scientia. Venice.
[77] Van Maanen, J. (1992). Seventeenth century instruments for drawing conic sections. The Mathematical Gazette, 76, 222–230.
[78] Witelo. (1991). Witelionis perspectivae liber secundus et liber tertius: Books II and III of Witelo’s perspectiva (S. Unguru, Trans. and Ed.). Wroclaw: Studia Copernicana XXVIII.
[79] Yoder J. G. (1988) Unrolling time: Christiaan Huygens and the mathematization of nature. Cambridge University Press, Cambridge · Zbl 0687.01005
[80] Zwijnenberg R. (1999) The writing and drawings of Leonardo da Vinci: Order and chaos in early modern thought (C. A. Van Eck, Trans.). Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.