×

Oscillation criteria of certain fractional partial differential equations. (English) Zbl 1485.35013

Summary: In this article, we regard the generalized Riccati transformation and Riemann-Liouville fractional derivatives as the principal instrument. In the proof, we take advantage of the fractional derivatives technique with the addition of interval segmentation techniques, which enlarge the manners to demonstrate the sufficient conditions for oscillation criteria of certain fractional partial differential equations.

MSC:

35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model Ambartsumian equation. Eur. Phys. J. Plus 133, 159 (2018) · doi:10.1140/epjp/i2018-11997-8
[2] Singh, J., Kumar, D., Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 231 (2018) · Zbl 1446.34018 · doi:10.1186/s13662-018-1680-1
[3] Kumar, D., Singh, J., Purohit, S.D., Swroop, R.: A hybrid analytical algorithm for nonlinear fractional wave-like equations. Math. Model. Nat. Phenom. 14, 304 (2019) · Zbl 1423.65001 · doi:10.1051/mmnp/2018063
[4] Singh, J., Kumar, D., Baleanu, D.: New aspects of fractional Biswas-Milovic model with Mittag-Leffler law. Math. Model. Nat. Phenom. 14(3), 303 (2019) · Zbl 1423.35415 · doi:10.1051/mmnp/2018068
[5] Singh, J., Kumar, D., Baleanu, D., Rathore, S.: On the local fractional wave equation in fractal strings. Math. Methods Appl. Sci. 42(5), 1588-1595 (2019) · Zbl 1419.35226 · doi:10.1002/mma.5458
[6] Singh, J.: A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law. Chaos 29, 013137 (2019) · Zbl 1406.91326 · doi:10.1063/1.5080691
[7] Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222-1227 (2019) · doi:10.1016/j.ijheatmasstransfer.2019.04.094
[8] Kumar, D., Singh, J., Qurashi, M.A., Baleanu, D.: A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Adv. Differ. Equ. 2019, 278 (2019). https://doi.org/10.1186/s13662-019-2199-9 · Zbl 1485.92136 · doi:10.1186/s13662-019-2199-9
[9] Feng, Q.H., Meng, F.W.: Oscillation of solutions to nonlinear forced fractional differential equations. Electron. J. Differ. Equ. 2013, 169 (2013) · Zbl 1390.39056 · doi:10.1186/1687-1847-2013-169
[10] Prakash, P., Harikrishnan, S., Nieto, J., et al.: Oscillation of a time fractional partial differential equation. Electron. J. Qual. Theory Differ. Equ. 2014, 15 (2014) · Zbl 1343.49009 · doi:10.1186/1687-1847-2014-15
[11] Li, W.N.: Forced oscillation criteria for a class of fractional partial differential equations with damping term. Math. Probl. Eng. 2015, 6 (2015) · Zbl 1394.35555
[12] Meng, F.: An oscillation theorem for second order superlinear differential equations. Indian J. Pure Appl. Math., 27 651-658 (1996) · Zbl 0862.34023
[13] Zhou, Y., Ahmad, B., Alsaedi, A.: Existence of nonoscillatory solutions for fractional neutral differential equations. Appl. Math. Lett. 72, 70-74 (2017) · Zbl 1373.34119 · doi:10.1016/j.aml.2017.04.016
[14] Zhou, Y., Ahmad, B., Alsaedi, A.: Existence of nonoscillatory solutions for fractional functional differential equations. Bull. Malays. Math. Soc. 42(2), 751-766 (2019) · Zbl 1418.34143 · doi:10.1007/s40840-017-0511-y
[15] Zhou, Y., Ahmad, B., Chen, F., Alsaedi, A.: Oscillation for fractional partial differential equations. Bull. Malays. Math. Soc. 42(2), 449-465 (2019) · Zbl 1412.35375 · doi:10.1007/s40840-017-0495-7
[16] Wang, J., Meng, F., Liu, S.: Integral average method for oscillation of second order partial differential equations with delays. Appl. Math. Comput. 187, 815-823 (2007) · Zbl 1119.35108
[17] Wang, J., Meng, F., Liu, S.: Interval oscillation criteria for second order partial differential equations with delays. J. Comput. Appl. Math. 212(2), 397-405 (2008) · Zbl 1135.35090 · doi:10.1016/j.cam.2006.12.015
[18] Lu, F., Meng, F.: Oscillation theorems for superlinear second-order damped differential equations. Appl. Math. Comput. 189(1), 796-804 (2007) · Zbl 1128.34020
[19] Feng, Q., Meng, F.: Oscillation of solutions to nonlinear forced fractional differential equations. Electron. J. Differ. Equ. 2013, 169 (2013) · Zbl 1390.39056 · doi:10.1186/1687-1847-2013-169
[20] Prakash, P., Harikrishnan, S., Nieto, J.J., Kim, J.H.: Oscillation of a time fractional partial differential equation. Electron. J. Qual. Theory Differ. Equ. (2014). https://doi.org/10.14232/ejqtde.2014.1.15 · Zbl 1324.35199 · doi:10.14232/ejqtde.2014.1.15
[21] Qi, C., Cheng, J.: Interval oscillation criteria for a class of fractional differential equations with damping term. Math. Probl. Eng. 2013, 8 (2013) · Zbl 1296.34152
[22] Grace, S.R., Agarwal, R.P., Wong, P.J.Y., Zafer, A.: On the oscillation of fractional differential equations. Fract. Calc. Appl. Anal. 15(2), 222-231 (2012) · Zbl 1273.34007 · doi:10.2478/s13540-012-0016-1
[23] Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience, New York (1966) · JFM 57.0245.01
[24] Yang, J., Liu, A., Liu, T.: Forced oscillation of nonlinear fractional differential equations with damping term. Adv. Differ. Equ. 2015, 7 (2015) · Zbl 1350.34072 · doi:10.1186/s13662-014-0337-y
[25] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[26] Chen, D.X.: Oscillation criteria of fractional differential equations. Adv. Differ. Equ. 2012, 10 (2012) · Zbl 1282.34066 · doi:10.1186/1687-1847-2012-10
[27] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[28] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Science Publishing, Hackensack (2014) · Zbl 1336.34001 · doi:10.1142/9069
[29] Li, W.N., Sheng, W.: Oscillation properties for solutions of a kind of partial fractional differential equations with damping term. J. Nonlinear Sci. Appl. 9(4), 1600-1608 (2016) · Zbl 1331.35372 · doi:10.22436/jnsa.009.04.17
[30] Chen, D.X., Qu, P.X., Lan, Y.H.: Forced oscillation of certain fractional differential equations. Adv. Differ. Equ. 2013, 125 (2013) · Zbl 1390.34085 · doi:10.1186/1687-1847-2013-125
[31] Leibniz, G.W.: Mathematische Schriften. Georg Olms Verlags Buchhand, Hildesheim (1962) · Zbl 1372.01097
[32] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[33] Samko, S.G., Kilbas, A.A., Marichev, O.: Fractional Integral and Derivatives: Theory and Applications. Elsevier, Amsterdam (1993) · Zbl 0818.26003
[34] Li, W.N.: On the forced oscillation of certain fractional partial differential equations. Appl. Math. Lett. 50, 5-9 (2015) · Zbl 1331.35371 · doi:10.1016/j.aml.2015.05.016
[35] Prakash, P., Harikrishnan, S., Benchohrab, M.: Oscillation of certain nonlinear fractional partial differential equation with damping term. Appl. Math. Lett. 43, 72-79 (2015) · Zbl 1406.35475 · doi:10.1016/j.aml.2014.11.018
[36] Harikrishnan, P., Prakash, J., Nieto, J.: Forced oscillation of solutions of a nonlinear fractional partial differential equation. Appl. Math. Comput. 254, 14-19 (2015) · Zbl 1410.35276
[37] Wang, J., Meng, F.: Oscillatory behavior of a fractional partial differential equation. J. Appl. Anal. Comput. 8, 1011-1020 (2018) · Zbl 1456.35226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.