zbMATH — the first resource for mathematics

An improved approach to evaluate default probabilities and default correlations with consistency. (English) Zbl 1396.91790
91G40 Credit risk
Full Text: DOI
[1] N. Akkaya, A. Kurth & A. Wagner (2004) Incorporating default correlations and severity variations. In: CreditRisk+ in the Banking Industry, M. Gundlach & F. Lehrbass eds., Springer Finance, ISSN:1616-0533, Springer-Verlag, Berlin, Heidelberg, pp. 129-152. genRefLink(16, ’S0219024916500369BIB001’, ’10.1007%252F978-3-662-06427-6_9’); · Zbl 1095.91025
[2] F. Black & J. C. Cox (1976) Valuing corporate securities: Some effects of bond indenture provisions, Journal of Finance31, 351-367. genRefLink(16, ’S0219024916500369BIB002’, ’10.2307%252F2326607’); genRefLink(128, ’S0219024916500369BIB002’, ’A1976CA49300009’);
[3] T. R. Bielecki & M. Rutkowski (2002) Credit Risk: Modeling, Valuation and Hedging. Berlin Heidelberg, New York: Springer-Verlag. · Zbl 0979.91050
[4] M. Crouhy, D. Galai & R. Mark (2000) A comparative analysis of current credit risk models, Journal of Banking and Finance24, 59-117. genRefLink(16, ’S0219024916500369BIB004’, ’10.1016%252FS0378-4266%252899%252900053-9’); genRefLink(128, ’S0219024916500369BIB004’, ’000084541500004’);
[5] S. R. Das, G. Fong & G. Geng (2001) Impact of correlated default risk on credit portfolios, Journal of Fixed Income11, 9-19. genRefLink(16, ’S0219024916500369BIB005’, ’10.3905%252Fjfi.2001.319301’);
[6] U. Erlenmaier & H. Gersbach (2014) Default correlations in the Merton model, Review of Finance18 (5), 1775-1809. genRefLink(16, ’S0219024916500369BIB006’, ’10.1093%252Frof%252Frft030’); genRefLink(128, ’S0219024916500369BIB006’, ’000340044500005’);
[7] K. Giesecke (2004) Correlated default with incomplete information, Journal of Banking and Finance28, 1521-1545. genRefLink(16, ’S0219024916500369BIB007’, ’10.1016%252FS0378-4266%252803%252900129-8’); genRefLink(128, ’S0219024916500369BIB007’, ’000222046300002’);
[8] M. Gundlach & F. Lehrbass (eds.) (2004) CreditRisk+ in the Banking Industry. Springer. genRefLink(16, ’S0219024916500369BIB008’, ’10.1007%252F978-3-662-06427-6’); · Zbl 1046.91001
[9] P. Jorion (2009) Risk management lessons from the credit crisis, European Financial Management15, 923-933. genRefLink(16, ’S0219024916500369BIB009’, ’10.1111%252Fj.1468-036X.2009.00507.x’); genRefLink(128, ’S0219024916500369BIB009’, ’000271002000002’);
[10] H. Leland (1994) Corporate debt value, bond covnants, and optimal capital structure, Journal of Finance49, 1213-1252. genRefLink(16, ’S0219024916500369BIB010’, ’10.2307%252F2329184’); genRefLink(128, ’S0219024916500369BIB010’, ’A1994PG76000003’);
[11] H. Leland & K. Toft (1996) Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads, Journal of Finance51, 987-1019. genRefLink(16, ’S0219024916500369BIB011’, ’10.2307%252F2329229’); genRefLink(128, ’S0219024916500369BIB011’, ’A1996UU14500008’);
[12] D. J. Lucas (1995) Default correlation and credit analysis, Journal of Fixed Income 76-87. genRefLink(16, ’S0219024916500369BIB012’, ’10.3905%252Fjfi.1995.408124’);
[13] R. C. Merton (1974) On the pricing of corporate debt: The risk structure of interest rates, Journal of Finance29, 449-470. genRefLink(16, ’S0219024916500369BIB013’, ’10.2307%252F2978814’); genRefLink(128, ’S0219024916500369BIB013’, ’A1974T356000010’);
[14] A. Metzler (2010) On the first passage problem for correlated Brownian motion, Statistics & Probability Letters80 (5-6), 277-284. genRefLink(16, ’S0219024916500369BIB014’, ’10.1016%252Fj.spl.2009.11.001’); genRefLink(128, ’S0219024916500369BIB014’, ’000274946100003’);
[15] T. N. Nielsen, J. Sa√°-Requejo & P. Santa-Clara (1993) Default Risk and Interest Rate Risk: The Term Structure of Default Spreads, INSEAD, 60 pp.
[16] J. A. Rebholz (1994) Planar Diffusions with Applications to Mathematical Finance, Ph. D. thesis dissertation, University of California, Berkeley.
[17] L. Sacerdote, M. Tamborrino & C. Zucca (2016) First passage times of two-dimensional correlated diffusion processes: Analytical results for the Wiener process and a numerical method for diffusion processes, Journal of Computational and Applied Mathematics296, 275-292. genRefLink(16, ’S0219024916500369BIB017’, ’10.1016%252Fj.cam.2015.09.033’); genRefLink(128, ’S0219024916500369BIB017’, ’000367107200020’); · Zbl 1333.60176
[18] M. Valu\"zis (2008) On the probabilities of correlated defaults: A first passage time approach, Nonlinear Analysis: Modeling and Control13 (1) 117-133. genRefLink(128, ’S0219024916500369BIB018’, ’000207800900009’);
[19] D. Zhang & R. V. N. Melnik (2009) First passage time for multivariate jump-diffusion processes in finance and other areas of applications, Applied Stochastic Models in Business and Industry25 (5), 565-582. genRefLink(16, ’S0219024916500369BIB019’, ’10.1002%252Fasmb.745’); genRefLink(128, ’S0219024916500369BIB019’, ’000271394300007’); · Zbl 1224.91176
[20] C. Zhou (2001) An analysis of default correlations and multiple defaults, The Review of Financial Studies14, 555-576. genRefLink(16, ’S0219024916500369BIB020’, ’10.1093%252Frfs%252F14.2.555’); genRefLink(128, ’S0219024916500369BIB020’, ’000167933000009’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.