×

The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures. (English) Zbl 07804318

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics
74B05 Classical linear elasticity
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197-224 (1988) · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[2] M, The COC algorithm, Part Ⅱ: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng., 89, 309-336 (1991) · doi:10.1016/0045-7825(91)90046-9
[3] H, Some aspects of the genesis of structures, Struct. Optim., 5, 64-69 (1992) · doi:10.1007/BF01744697
[4] G, Layout optimization of structures, Appl. Mech. Rev., 48, 41-119 (1995) · doi:10.1115/1.3005097
[5] A, Sufficiency of a finite exponent in SIMP (power law) method, Struct. Multidiscip. Optim., 21, 159-163 (2001) · doi:10.1007/s001580050180
[6] M, An improved optimality criterion combined with density filtering method for structural topology optimization, Eng. Optim., 55, 416-433 (2023) · Zbl 1523.74118 · doi:10.1080/0305215X.2021.2010728
[7] Y, A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-896 (1993) · doi:10.1016/0045-7949(93)90035-C
[8] O, Evolutionary structural optimisation using an additive algorithm, Finite Elem. Anal. Des., 34, 291-308 (2000) · Zbl 0980.74051 · doi:10.1016/S0168-874X(99)00044-X
[9] O, Evolutionary structural optimization (ESO) using a bidirectional algorithm, Eng. Comput., 15, 1031-1048 (1998) · Zbl 0938.74056 · doi:10.1108/02644409810244129
[10] S, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[11] G, A level-set method for shape optimization, C.R. Math., 334, 1125-1130 (2002) · Zbl 1115.49306 · doi:10.1016/S1631-073X(02)02412-3
[12] G, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393 (2004) · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[13] G. Allaire, F. Gournay, F. Jouve, A.M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern., 34 (2005), 59-80. Available from: file:///C:/Users/97380/Downloads/Structural_optimization_using_topol.pdf. · Zbl 1167.49324
[14] M, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., 192, 227-246 (2003) · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[15] M, A level-set based multi-material topology optimization method using a reaction diffusion equation, Comput.-Aided Des., 73, 41-52 (2016) · doi:10.1016/j.cad.2015.12.002
[16] S, Detection of material interfaces using a regularized level set method in piezoelectric structures, Inverse Probl. Sci. Eng., 24, 153-176 (2016) · doi:10.1080/17415977.2015.1017485
[17] M, A parameterized level set method for structural topology optimization based on reaction diffusion equation and fuzzy PID control algorithm, Electron. Res. Arch., 30, 2568-2599 (2022) · Zbl 1517.74077 · doi:10.3934/era.2022132
[18] M, The parameterized level set method for structural topology optimization with shape sensitivity constraint factor, Eng. Comput., 37, 855-872 (2021) · doi:10.1007/s00366-019-00860-8
[19] M, A meshless method for multi-material topology optimization based on the alternating active-phase algorithm, Eng. Comput., 33, 871-884 (2017) · doi:10.1007/s00366-017-0503-4
[20] B, Design-dependent loads in topology optimization, ESAIM. Control. Optim. Calc. Var., 9, 19-48 (2003) · Zbl 1066.49029 · doi:10.1051/cocv:2002070
[21] M, Topology optimization of plates with constrained Layer damping treatments using a modified guide-weight method, J. Vib. Eng. Technol., 10, 19-36 (2022) · doi:10.1007/s42417-021-00361-3
[22] T, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[23] J. Cottrell, T. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, 2009. https://doi.org/10.1002/9780470749081 · Zbl 1378.65009
[24] Y, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 1031-1090 (2006) · Zbl 1103.65113 · doi:10.1142/S0218202506001455
[25] B, An isogeometrical approach to structural topology optimization by optimality criteria, Struct. Multidiscip. Optim., 45, 223-233 (2012) · Zbl 1274.74339 · doi:10.1007/s00158-011-0680-5
[26] A, Topology optimization using B-spline finite elements, Struct. Multidiscip. Optim., 44, 471-481 (2011) · Zbl 1274.74358 · doi:10.1007/s00158-011-0650-y
[27] X, Topology optimization in B-spline space, Comput. Methods Appl. Mech. Eng., 265, 15-35 (2013) · Zbl 1286.74078 · doi:10.1016/j.cma.2013.06.001
[28] Q, Multiresolution topology optimization using isogeometric analysis, Int. J. Numer. Methods Eng., 112, 2025-2047 (2017) · doi:10.1002/nme.5593
[29] Q, A multi-resolution approach for multi-material topology optimization based on isogeometric analysis, Comput. Methods Appl. Mech. Eng., 323, 272-302 (2017) · Zbl 1439.74283 · doi:10.1016/j.cma.2017.05.009
[30] A, An isogeometric approach to topology optimization of multi-material and functionally graded structures, Int. J. Numer. Methods Eng., 109, 668-696 (2017) · doi:10.1002/nme.5303
[31] M, On the structural stiffness maximisation of anisotropic continua under inhomogeneous Neumann-Dirichlet boundary conditions, Compos. Struct., 287, 115289 (2022) · doi:10.1016/j.compstruct.2022.115289
[32] M, Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method, Compos. Struct., 280, 114862 (2022) · doi:10.1016/j.compstruct.2021.114862
[33] G, Eigen-frequencies and harmonic responses in topology optimisation: a CAD-compatible algorithm, Eng. Struct., 214, 110602 (2020) · doi:10.1016/j.engstruct.2020.110602
[34] T, Structural displacement requirement in a topology optimization algorithm based on isogeometric entities, J. Optim. Theory Appl., 184, 250-276 (2020) · Zbl 1432.74189 · doi:10.1007/s10957-019-01622-8
[35] T, Stress-based topology optimisation through non-uniform rational basis spline hyper-surfaces, Mech. Adv. Mater. Struct., 29, 3387-3407 (2022) · doi:10.1080/15376494.2021.1896822
[36] H, A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Eng., 313, 239-258 (2017) · Zbl 1439.74414 · doi:10.1016/j.cma.2016.09.029
[37] H, A multi-material level set-based topology optimization of flexoelectric composites, Comput. Methods Appl. Mech. Eng., 332, 47-62 (2018) · Zbl 1439.74270 · doi:10.1016/j.cma.2017.12.005
[38] Y, Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Eng., 316, 568-585 (2017) · Zbl 1439.74301 · doi:10.1016/j.cma.2016.08.015
[39] Y, Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves, Struct. Multidiscip. Optim., 61, 963-982 (2020) · doi:10.1007/s00158-019-02398-1
[40] M. P. Bendsøe, O. Sigmund, Topology Optimization, Berlin, Heidelberg: Springer, 2004. https://doi.org/10.1007/978-3-662-05086-6 · Zbl 1059.74001
[41] O, Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 401-424 (2007) · doi:10.1007/s00158-006-0087-x
[42] M, An asymptotically concentrated method for structural topology optimization based on the SIMLF interpolation, Int. J. Numer. Methods Eng., 115, 1175-1216 (2018) · doi:10.1002/nme.5840
[43] G, A 2D topology optimisation algorithm in NURBS framework with geometric constraints, Int. J. Mech. Mater. Des., 14, 669-696 (2018) · doi:10.1007/s10999-017-9396-z
[44] H, Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Eng., 198, 2982-2995 (2009) · Zbl 1229.74131 · doi:10.1016/j.cma.2009.05.004
[45] G, Minimum length scale control in a NURBS-based SIMP method, Comput. Methods Appl. Mech. Eng., 354, 963-989 (2019) · Zbl 1441.74155 · doi:10.1016/j.cma.2019.05.026
[46] K, The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Methods Eng., 24, 359-373 (1987) · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[47] K. Svanberg, M. Werme, Topology optimization by sequential integer linear programming, in IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Springer Netherlands, (2006), 425-436. https://doi.org/10.1007/1-4020-4752-5_42 · Zbl 1113.74056
[48] M, Using the sequential linear integer programming method as a post-processor for stress-constrained topology optimization problems, Int. J. Numer. Methods Eng., 76, 1544-1567 (2008) · Zbl 1195.74139 · doi:10.1002/nme.2378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.