×

Second order unconditionally convergent and energy stable linearized scheme for MHD equations. (English) Zbl 1388.76159

Summary: In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal \(L^2\) and \(H^1\) fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abboud, H; Girault, V; Sayah, T, A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 114, 189-231, (2009) · Zbl 1407.76111 · doi:10.1007/s00211-009-0251-5
[2] Akbas, M; Kaya, S; Mohebujjaman, M; Rebholz, LG, Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in elsässer variable, Int. J. Numer. Anal. Model., 13, 90-113, (2016) · Zbl 1345.76114
[3] Akbas, M., Kaya, S., Rebholz, L.G.: On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems. Numer. Methods PDEs (2016) · Zbl 1439.76043
[4] Akrivis, G, Implicit-explicit multistep methods for nonlinear parabolic equations, Math. Comput., 82, 45-68, (2013) · Zbl 1266.65152 · doi:10.1090/S0025-5718-2012-02628-7
[5] Ascher, UM; Ruuth, SJ; Wetton, BTR, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823, (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[6] Badia, S; Codina, R, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ale framework, SIAM J. Numer. Anal., 44, 2159-2197, (2006) · Zbl 1126.65079 · doi:10.1137/050643532
[7] Bermejo, R; Galán Del Sastre, P; Saavedra, L, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50, 3084-3109, (2012) · Zbl 1263.76040 · doi:10.1137/11085548X
[8] Borzì, A; Andrade, SG, Second-order approximation and fast multigrid solution of parabolic bilinear optimization problems, Adv. Comput. Math., 41, 457-488, (2015) · Zbl 1316.49034 · doi:10.1007/s10444-014-9369-9
[9] Cao, C; Wu, J, Two regularity criteria for the 3D MHD equations, J. Differ. Equ., 248, 2263-2274, (2010) · Zbl 1190.35046 · doi:10.1016/j.jde.2009.09.020
[10] Case, MA; Labovsky, A; Rebholz, LG; Wilson, NE, A high physical accuracy method for incompressible magnetohydrodynamics, Int. J. Numer. Anal. Model. Ser. B, 1, 217-236, (2010) · Zbl 1251.35194
[11] Chen, W; Gunzburger, M; Sun, D; Wang, X, Efficient and long-time accurate second-order methods for Stokes-Darcy system, SIAM J. Numer. Anal., 51, 2563-2584, (2013) · Zbl 1282.76094 · doi:10.1137/120897705
[12] Del Sastre, PG; Bermejo, R, Error analysis for hp-FEM semi-Lagrangian second order BDF method for convection-dominated diffusion problems, J. Sci. Comput., 49, 211-237, (2011) · Zbl 1242.65184 · doi:10.1007/s10915-010-9454-2
[13] De Los Reyes, JC; Andrade, SG, Numerical simulation of thermally convective viscoplastic fluids by semismooth second order type methods, J. Non-Newtonian Fluid Mech., 193, 43-48, (2013) · doi:10.1016/j.jnnfm.2012.06.001
[14] Dolejší, V; Vlasák, M, Analysis of a BDF-DGFE scheme for nonlinear convection-diffusion problems, Numer. Math., 110, 405-447, (2008) · Zbl 1158.65068 · doi:10.1007/s00211-008-0178-2
[15] Emmrich, E, Error of the two-step BDF for the incompressible Navier-Stokes problem, ESAIM: M2AN, 38, 757-764, (2004) · Zbl 1076.76054 · doi:10.1051/m2an:2004037
[16] Emmrich, E, Convergence of a time discretization for a class of non-Newtonian fluid flow, Commun. Math. Sci., 6, 827-843, (2008) · Zbl 1160.76034 · doi:10.4310/CMS.2008.v6.n4.a2
[17] Emmrich, E, Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator, BIT Numer. Math., 49, 297-323, (2009) · Zbl 1172.65026 · doi:10.1007/s10543-009-0221-4
[18] Georgescu, V, Some boundary value problems for differenttial forms on compact Riemannian manifolds, Ann. Mat. Pura Appl., 4, 159-198, (1979) · Zbl 0432.58026 · doi:10.1007/BF02411693
[19] Gerbeau, J.F.: Problèmes mathématiques et numériques posés par la modélisation de l’électrolyse de l’aluminium. Ph.D. Thesis, École Nationale des Ponts et Chaussées (1998)
[20] Gerbeau, JF, A stabilized finite element method for the incompressible magnetohydrodynamic equations, Numer. Math., 87, 83-111, (2000) · Zbl 0988.76050 · doi:10.1007/s002110000193
[21] Gerbeau, J.F., Le Bris, C., Lelièvre, T.: Mathematical Method for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, Oxford (2006) · Zbl 1107.76001 · doi:10.1093/acprof:oso/9780198566656.001.0001
[22] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equtions: Theory and Algorithms. Springer, New York (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[23] Greif, C; Li, D; Schötzau, D; Wei, X, A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 199, 2840-2855, (2010) · Zbl 1231.76146 · doi:10.1016/j.cma.2010.05.007
[24] Gunzburger, MD; Meir, AJ; Peterson, JP, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comp., 56, 523-563, (1991) · Zbl 0731.76094 · doi:10.1090/S0025-5718-1991-1066834-0
[25] He, C; Wang, Y, On the regularity criteria for weak solutions to the magnetohydrodynamic equations, J. Differ. Equ., 238, 1-17, (2007) · Zbl 1220.35117 · doi:10.1016/j.jde.2007.03.023
[26] He, YN, Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations, IMA J. Numer. Anal., 35, 767-801, (2015) · Zbl 1312.76061 · doi:10.1093/imanum/dru015
[27] Heister, T; Mohebujjaman, M; Rebholz, LG, Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation, J. Sci. Comput., 71, 21-43, (2017) · Zbl 06849348 · doi:10.1007/s10915-016-0288-4
[28] Heister, T; Olshanskii, MA; Rebholz, LG, Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations, Numer. Math., 135, 143-167, (2017) · Zbl 1387.76052 · doi:10.1007/s00211-016-0794-1
[29] Heywood, JG; Rannacher, R, Finite-element approximations of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19, 275-311, (1982) · Zbl 0487.76035 · doi:10.1137/0719018
[30] Hill, AT; Söli, E, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20, 633-667, (2000) · Zbl 0982.76022 · doi:10.1093/imanum/20.4.633
[31] Huang, C; Vandewalle, S, Unconditionally stable difference methods for delay partial differential equations, Numer. Math., 122, 579-601, (2012) · Zbl 1272.65066 · doi:10.1007/s00211-012-0467-7
[32] Kim, S; Lee, EB; Choi, W, Newton’s algorithm for magnetohydrodynamic equations with the initial guess from Stokes-like problem, J. Comput. Appl. Math., 309, 1-10, (2017) · Zbl 1457.76128 · doi:10.1016/j.cam.2016.06.022
[33] Layton, W; Mays, N; Neda, M; Trenchea, C, Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations, ESAIM: M2AN., 48, 765-793, (2014) · Zbl 1293.35210 · doi:10.1051/m2an/2013120
[34] Layton, W; Tran, H; Trenchea, C, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Method Partial Differ. Equs., 30, 1083-1102, (2014) · Zbl 1364.76088 · doi:10.1002/num.21857
[35] Lifschitz, A.E.: Magnetohydrodynamics and spectral theory. Kluwer, Dordrecht (1989) · Zbl 0698.76122 · doi:10.1007/978-94-009-2561-8
[36] Lin, F; Zhang, P, Global small solutions to an MHD-type system: the three-dimensional case, Comm. Pure Appl. Math., 67, 531-580, (2014) · Zbl 1298.35153 · doi:10.1002/cpa.21506
[37] Lin, F; Xu, L; Zhang, P, Global small solutions to 2-D incompressible MHD system, J. Differ. Equ., 259, 5440-5485, (2015) · Zbl 1321.35138 · doi:10.1016/j.jde.2015.06.034
[38] Meir, AJ; Schmidt, PG, Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary, SIAM J. Numer. Anal., 36, 1304-1332, (1999) · Zbl 0948.76091 · doi:10.1137/S003614299732615X
[39] Moreau, R.: Magnetohydrodynamics. Kluwer, Dordrecht (1990) · Zbl 0714.76003 · doi:10.1007/978-94-015-7883-7
[40] Phillips, EG; Elman, HC; Cyr, EC; Shadid, JN; Pawlowski, RP, A block preconditioner for an exact penalty formulation for stationary MHD, SIAM J. Sci. Comput., 36, b930-b951, (2014) · Zbl 1308.76333 · doi:10.1137/140955082
[41] Phillips, EG; Shadid, JN; Cyr, EC; Elman, HC; Pawlowski, RP, Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD, SIAM J. Sci. Comput., 38, b1009-b1031, (2016) · Zbl 1349.76903 · doi:10.1137/16M1074084
[42] Priest, E.R., Hood, A.W.: Advances in Solar System Magnetohydrodynamics. Cambridge University Press, Cambridge (1991)
[43] Prohl, A, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system, M2AN, Math. Model. Numer. Anal., 42, 1065-1087, (2008) · Zbl 1149.76029 · doi:10.1051/m2an:2008034
[44] Rong, Y., Hou, Y., Zhang, Y.: Numerical analysis of a second order algorithm for simplified magnetohydrodynamic flows. Adv. Comput. Math. http://doi.org/10.1007/s10444-016-9508-6 (2016) · Zbl 1433.76091
[45] Schonbek, ME; Schonbek, TP; Söli, E, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304, 717-756, (1996) · Zbl 0846.35018 · doi:10.1007/BF01446316
[46] Schötzau, D, Mixed finite element methods for stationary incompressible magnetohydrodynamics, Numer. Math., 96, 771-800, (2004) · Zbl 1098.76043 · doi:10.1007/s00211-003-0487-4
[47] Sermange, M; Temam, R, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36, 635-664, (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[48] Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis (3rd Ed.), North-Holland, Amsterdam (1983) · Zbl 0522.35002
[49] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Spinger, New York (1988) · Zbl 0662.35001 · doi:10.1007/978-1-4684-0313-8
[50] Tone, F, On the long-time H2-stability of the implicit Euler scheme for the 2D magnetohydrodynamics equations, J. Sci. Comput., 38, 331-348, (2009) · Zbl 1203.76178 · doi:10.1007/s10915-008-9236-2
[51] Trenchea, C, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27, 97-100, (2014) · Zbl 1311.76096 · doi:10.1016/j.aml.2013.06.017
[52] Varah, JM, Stability restrictions on second-order, three level finite difference schemes for parabolic equations, SIAM J. Numer. Anal., 17, 300-309, (1980) · Zbl 0426.65048 · doi:10.1137/0717025
[53] Wacker, B; Arndt, D; Lube, G, Nodal-based finite element methods with local projection stabilization for linearized incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 302, 170-192, (2016) · Zbl 1423.76284 · doi:10.1016/j.cma.2016.01.004
[54] Wang, X, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations, Numer. Math., 121, 753-779, (2012) · Zbl 1435.76054 · doi:10.1007/s00211-012-0450-3
[55] Wiedmer, M, Finite element approximation for equations of magnetohydrodynamics, Math. Comput., 69, 83-101, (2000) · Zbl 0944.76039 · doi:10.1090/S0025-5718-99-01146-1
[56] Yuksel, G; Ingram, R, Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flow at small magnetic Reynolds number, Int. J. Numer. Anal. Model., 10, 74-98, (2013) · Zbl 1266.76066
[57] Yuksel, G; Isik, OR, Numerical analysis of backward-Euler discretization for simplified magnetohydrodynamic flows, Appl. Math. Model., 39, 1889-1898, (2015) · Zbl 1443.76153 · doi:10.1016/j.apm.2014.10.007
[58] Zhang, GD; He, YN; Zhang, Y, Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics, Numer. Method PDEs., 30, 1877-1901, (2014) · Zbl 1446.76188 · doi:10.1002/num.21882
[59] Zhang, GD; He, YN, Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations: numerical implementation, Internat. J. Numer. Methods Heat Fluid Flow., 25, 1912-1923, (2015) · Zbl 1356.76451 · doi:10.1108/HFF-08-2014-0257
[60] Zhang, GD; He, YN, Decoupled schemes for unsteady MHD equations II: finite element discretization and numerical implementation, Comput. Math. Appl., 69, 1390-1406, (2015) · Zbl 1443.65232 · doi:10.1016/j.camwa.2015.03.019
[61] Zhang, K; Wong, JCF; Zhang, R, Second-order implicit-explicit scheme for the gray-Scott model, J. Comput. Appl. Math., 213, 559-581, (2008) · Zbl 1135.65377 · doi:10.1016/j.cam.2007.01.038
[62] Zhang, Y; Hou, Y; Shan, L, Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows, Numer. Method. for PDEs., 31, 2169-2208, (2015) · Zbl 1331.76075 · doi:10.1002/num.21989
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.