×

A hydrodynamical model for holes in silicon semiconductors. (English) Zbl 1358.82039


MSC:

82D37 Statistical mechanics of semiconductors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anile, A.M. and Muscato, O. (1995), ”Improved hydrodynamical model for carrier transport in semiconductors”, Physical Review B, Vol. 51 No. 23, pp. 16728-40. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[2] Anile, A.M. and Romano, V. (1999), ”Non parabolic band transport in semiconductors: closure of the moment equations”, Continuum Mechanics and Thermodynamics, Vol. 11, pp. 307-25. , · Zbl 1080.82584 · doi:10.1108/03321641211200581
[3] Anile, A.M., Mascali, G. and Romano, V. (2003), ”Recent developments in hydrodynamical modeling of semiconductors”, in Anile, A.M., Allegretto, W. and Ringhofer, C. (Eds), Problems in Semiconductor Physics, Lecture Notes in Mathematics, Vol. 1823, Springer, Berlin, pp. 1-54. · Zbl 1036.82027
[4] Ashcroft, N.W. and Mermin, N.D. (1976), Solid State Physics, Sounders College Publishing, Philadelphia, PA. · Zbl 1107.82300
[5] Baccarani, G. and Wordeman, M.R. (1985), ”An investigation on steady-state velocity overshoot in silicon”, Solid-State Electronics, Vol. 28 No. 4, pp. 407-16. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[6] Baranskii, P.I., Buda, I.S., Dakhovskii, I.V. and Kolomets, V.V. (1977), Electric and Galvanometric Phenomena in Anisotropic Semiconductors, Naukova dumka, Kiev.
[7] Ben Abdallah, N. and Degond, P. (1996), ”On a hierarchy of macroscopic models for semiconductors”, Journal of Mathematical Physics, Vol. 37 No. 6, pp. 3306-33. · Zbl 0868.45006 · doi:10.1108/03321641211200581
[8] Ben Abdallah, N., Degond, P. and Genieys, S. (1996), ”An energy-transport model for semiconductors derived from the Boltzmann equation”, Journal of Statistical Physics, Vol. 84 Nos 1/2, pp. 205-31. , · Zbl 1081.82610 · doi:10.1108/03321641211200581
[9] Blotekjaer, K. (1970), ”Transport equations for electrons in two-valley semiconductors”, IEEE Transactions on Electron Devices, Vol. ED-17 No. 1, pp. 38-47. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[10] Canali, C., Majni, G., Minder, R. and Ottaviani, G. (1975), ”Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature”, IEEE Transactions on Electron Devices, Vol. ED-22 No. 11, pp. 1045-7. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[11] Chen, D., Kan, E.C., Ravaioli, U., Shu, C.-W. and Dutton, R. (1992), ”An improved energy-transport model including nonparabolicity and non-maxwellian distribution effects”, IEEE on Electron Device Letters, Vol. 13 No. 1, pp. 26-8. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[12] Fischetti, M.V. (1991), ”Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures - part I: homogeneous transport”, IEEE Transactions on Electron Devices, Vol. 38 No. 3, pp. 634-49. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[13] Fischetti, M.V. and Laux, S.E. (1996), ”Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys”, Journal of Applied Physics, Vol. 80 No. 4, pp. 2234-52. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[14] González, P., Carrillo, J.A. and Gámiz, F. (2006), ”Deterministic numerical simulation of 1D kinetic descriptions of bipolar electron devices”, in Anile, A.M., Ali, G. and Mascali, G. (Eds), The European Consortium for Mathematics in Industry, Scientific Computing in Electrical Engineering, Series: Mathematics in Industry, Subseries, Vol. 9, Springer, Berlin, pp. 339-44. · Zbl 1157.78310
[15] Hänsch, W. (1991), The Drift-Diffusion Equation and Its Applications in MOSFET Modeling, Springer, Wien.
[16] Jacoboni, C. and Lugli, P. (1989), The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien.
[17] Jacoboni, C. and Reggiani, L. (1983), ”The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials”, Reviews of Modern Physics, Vol. 55 No. 3, pp. 645-705. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[18] Jaynes, E.T. (1957), ”Information theory and statistical mechanics”, Physical Review, Vol. 106 No. 4, pp. 620-30. , · Zbl 0084.43701 · doi:10.1108/03321641211200581
[19] Jerome, J. (1996), Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices, Springer, Berlin.
[20] Jou, D., Casas-Vazquez, J. and Lebon, G. (1993), Extended Irreversible Thermodynamics, Springer, Berlin. · Zbl 0974.74003
[21] Jüngel, A. (2001), Quasi-hydrodynamic Semiconductor Equations, Birkhauser, Basel. · Zbl 0969.35001
[22] Jungemann, C. and Meinerzhagen, B. (2003), Hierarchical Device Simulation: The Monte-Carlo Perspective, Springer, Wien. · Zbl 1107.82301
[23] La Rosa, S. and Romano, V. (2008), ”The maximum entropy principle hydrodynamical model for holes in silicon semiconductors: the case of the warped bands”, Journal of Physics, Vol. 41, p. 21513. · Zbl 1143.82032
[24] Levermore, C.D. (1996), ”Moment closure hierarchies for kinetic theories”, Journal of Statistical Physics, Vol. 83 Nos 5/6, pp. 1021-65. , · Zbl 1081.82619 · doi:10.1108/03321641211200581
[25] Liotta, S.F. and Mascali, G. (2006), ”A hydrodynamical model for silicon bipolar devices”, Proceedings of WASCOM 2005: 13th Conference on Waves and Stability in Continuous Media, Catania, World Scientific, Singapore, pp. 322-7. · Zbl 1345.82019
[26] Liotta, S.F., Romano, V. and Russo, G. (2000), ”Central schemes for balance laws of relaxation type”, SIAM Journal on Numerical Analysis, Vol. 38, pp. 1337-56. , · Zbl 0982.65093 · doi:10.1108/03321641211200581
[27] Lundstrom, M. and Guo, J. (2006), Nanoscale Transistor: Device Physics, Modeling, and Simulation, Springer, New York, NY.
[28] Lyumkis, E., Polsky, B., Shir, A. and Visocky, P. (1992), ”Transient semiconductor device simulation including energy balance equation”, COMPEL, Vol. 11 No. 2, pp. 311-25. , · Zbl 0756.65144 · doi:10.1108/03321641211200581
[29] Markowich, P., Ringhofer, C.A. and Schmeiser, C. (1990), Semiconductor Equations, Springer, Wien. · Zbl 0765.35001
[30] Mascali, G. and Romano, V. (2002), ”Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle”, Continuum Mechanics and Thermodynamics, Vol. 14, pp. 405-23. , · Zbl 1029.82045 · doi:10.1108/03321641211200581
[31] Mascali, G. and Trovato, M. (2002), ”A non-linear determination of the distribution function of degenerate gases with an application to semiconductors”, Physica A, Vol. 310, pp. 121-38. , · Zbl 0995.82048 · doi:10.1108/03321641211200581
[32] Mascali, G., Sellier, J.M. and Romano, V. (2005), ”MEP parabolic hydrodynamical model for holes in silicon semiconductors”, Il Nuovo Cimento, Vol. 120B No. 2, pp. 197-215.
[33] Müller, I. and Ruggeri, T. (1998), Rational Extended Thermodynamics, Springer, Berlin. · Zbl 0895.00005
[34] Muscato, O. (2001), ”The Onsager reciprocity principle as a check of consistency for semiconductor carrier transport models”, Physica A, Vol. 289, pp. 422-58. , · Zbl 0971.82522 · doi:10.1108/03321641211200581
[35] Nessyahu, H. and Tadmor, E. (1990), ”Non-oscillatory central differencing for hyperbolic conservation law”, Journal of Computational Physics, Vol. 87 No. 2, pp. 408-63. , · Zbl 0697.65068 · doi:10.1108/03321641211200581
[36] Ottaviani, G., Reggiani, L., Canali, C., Nava, F. and Alberigi-Quaranta, A. (1975), ”Hole drift velocity in silicon”, Physical Review B, Vol. 12 No. 8, pp. 3318-29. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[37] Romano, V. (2000), ”Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Continuum Mechanics and Thermodynamics, Vol. 12, pp. 31-51. , · Zbl 0962.82085 · doi:10.1108/03321641211200581
[38] Romano, V. (2007), ”2D numerical simulation of the MEP energy-transport model with a finite difference scheme”, Journal of Computational Physics, Vol. 221, pp. 439-68. , · Zbl 1216.82035 · doi:10.1108/03321641211200581
[39] Samoilovich, A.G., Korenblit, I.Ya., Dakhovskii, I.V. and Iskra, V.D. (1961), ”The anisotropy of electron scattering by ionized impurities and acoustic phonons”, DAN SSSR, Vol. 139, p. 355.
[40] Selberherr, S. (1984), Analysis and Simulation of Semiconductor Devices, Springer, Wien.
[41] Smirnov, S. and Jungemann, C. (2006), ”A full band deterministic model for semiclassical carrier transport in semiconductors”, Journal of Applied Physics, Vol. 99, pp. 63707-17. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[42] Smith, P.M., Frey, J. and Chatterjee, P. (1981), ”High-field transport of holes in silicon”, Applied Physics Letters, Vol. 39 No. 4, pp. 332-3. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[43] Stratton, R. (1962), ”Diffusion of hot and cold electrons in semiconductor barriers”, Physical Review, Vol. 126 No. 6, pp. 2002-14. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
[44] Takeda, K., Taguchi, A. and Sakata, M. (1983), ”Valence-band parameters and hole mobility of Ge-Si alloys-theory”, Journal of Physics C: Solid State Physics, Vol. 16 No. 12, pp. 2237-49. · Zbl 1358.82039 · doi:10.1108/03321641211200581
[45] Watling, J.R., Asenov, A. and Barker, J.R. (1998), ”Efficient hole transport model in warped bands for use in the simulation of Si/SiGe MOSFETs”, Proceedings of the IEEE IWCE-6, Osaka, Japan, No. 98EX116, pp. 96-9.
[46] Wiley, J.D. (1971), ”Polar mobility of holes in III-IV compounds”, Physical Review B, Vol. 4 No. 8, pp. 2485-93. , · Zbl 1358.82039 · doi:10.1108/03321641211200581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.