zbMATH — the first resource for mathematics

Bundles, presemifields and nonlinear functions. (English) Zbl 1178.94190
Summary: Bundles are equivalence classes of functions derived from equivalence classes of transversals. They preserve measures of resistance to differential and linear cryptanalysis. For functions over \(\text{GF}(2^n)\), affine bundles coincide with EA-equivalence classes. From equivalence classes (“bundles”) of presemifields of order \(p^n\), we derive bundles of functions over \(\text{GF}(p^n)\) of the form \(\lambda(x)*\rho(x)\), where \(\lambda, \rho\) are linearised permutation polynomials and \(*\) is a presemifield multiplication. We prove there are exactly \(p\) bundles of presemifields of order \(p^2\) and give a representative of each. We compute all bundles of presemifields of orders \(p^n\leq 27\) and in the isotopism class of \(\text{GF}(32)\) and we measure the differential uniformity of the derived \(\lambda(x)*\rho(x)\). This technique produces functions with low differential uniformity, including PN functions (\(p\) odd), and quadratic APN and differentially 4-uniform functions \((p=2)\).

94A60 Cryptography
12K10 Semifields
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
20J06 Cohomology of groups
Full Text: DOI
[1] Berger T.P., Canteaut A., Charpin P., Laigle-Chapuy Y. (2006) On almost perfect nonlinear functions over \(\mathbb F_{2^n}\) . IEEE Trans. Inform. Theory 52:4160–4170 · Zbl 1184.94224 · doi:10.1109/TIT.2006.880036
[2] Bosma W., Cannon J., Playoust C. (1997) The MAGMA algebra system I: the user language. J. Symbol. Comp. 24:235–265 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[3] Brinkmann M., Leander G.: On the classification of APN functions up to dimension five. In: Proceedings, International Workshop on Coding and Cryptography, April 16–20, 2007, INRIA-Rocquencourt, France, pp. 39–48 (2007). · Zbl 1184.94227
[4] Budaghyan L., Carlet C., Leander G.: Another class of quadratic APN binomials over \(\mathbb F_{2^n}\) : the case n divisible by 4. In: Proceedings, International Workshop on Coding and Cryptography, April 16–20, 2007, INRIA-Rocquencourt, France, pp. 49–58 (2007).
[5] Budaghyan L., Carlet C., Felke P., Leander G.: An infinite class of quadratic APN functions which are not equivalent to power mappings, Cryptology ePrint Archive: Report 2005/359 http://eprint.iacr.org/2005/35 . In: Proceedings ISIT, July 9–14, 2006, Seattle, USA, IEEE, pp. 2637–2641 (2006).
[6] Budaghyan L., Carlet C., Pott A. (2006) New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inform. Theory 52:1141–1152 · Zbl 1177.94136 · doi:10.1109/TIT.2005.864481
[7] Carlet C.: Boolean functions for cryptography and error-correcting codes; and, Vectorial Boolean functions for cryptography. In: Hammer P., Crama Y. (eds.) Boolean Methods and Models, CUP, Cambridge (to appear). · Zbl 1209.94035
[8] Carlet C., Charpin P., Zinoviev V. (1998) Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15:125–156 · Zbl 0938.94011 · doi:10.1023/A:1008344232130
[9] Carlet C., Ding C. (2004) Highly nonlinear mappings. J. Complexity 20:205–244 · Zbl 1053.94011 · doi:10.1016/j.jco.2003.08.008
[10] Colbourn C.J., Dinitz J.H. (eds) (1996) The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton · Zbl 0836.00010
[11] Cordero M., Wene G.P. (1999) A survey of finite semifields. Discrete Math. 208/209:125–137 · Zbl 1031.12009 · doi:10.1016/S0012-365X(99)00068-0
[12] Coulter R.S., Matthews R.W. (1997) Planar functions and planes of Lenz-Barlotti Class II. Des. Codes Cryptogr. 10:167–184 · Zbl 0872.51007 · doi:10.1023/A:1008292303803
[13] Dobbertin H. (1999) Almost perfect nonlinear power functions on GF(2 n ): the Welch case. IEEE Trans. Inform. Theory 45:1271–1275 · Zbl 0957.94021 · doi:10.1109/18.761283
[14] Edel Y., Kyureghyan G., Pott A. (2006) A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52:744–747 · Zbl 1246.11185 · doi:10.1109/TIT.2005.862128
[15] Galati J.C. (2004) A group extensions approach to relative difference sets. J. Combin. Designs 12:279–298 · Zbl 1045.05021 · doi:10.1002/jcd.10090
[16] Horadam K.J.: Differential uniformity for arrays, cryptography and coding. In: Proceedings of the 9th IMA International Conference, LNCS 2898, pp. 115–124. Springer, Berlin (2003). · Zbl 1123.94346
[17] Horadam K.J. (2006) A theory of highly nonlinear functions. In: Fossorier M., et al. (eds) AAECC-16, LNCS 3857. Springer, Berlin, pp. 87–100 · Zbl 1125.94022
[18] Horadam K.J. (2007) Hadamard Matrices and Their Applications. Princeton University Press, Princeton, NJ · Zbl 1145.05014
[19] Horadam K.J.: Transversals and graphs: bundles, CCZ and EA equivalence of functions, manuscript in preparation.
[20] Horadam K.J., Farmer D.G.: Bundles, presemifields and nonlinear functions. In: Proceedings, International Workshop on Coding and Cryptography, April 16–20, 2007, INRIA-Rocquencourt, France, pp. 197–206 (2007). · Zbl 1178.94190
[21] Horadam K.J., Udaya P. (2002) A new construction of central relative (p a , p a , p a , 1)-difference sets. Des. Codes Cryptogr. 27:281–295 · Zbl 1027.05013 · doi:10.1023/A:1019999223151
[22] Knuth D.E. (1965) Finite semifields and projective planes. J. Algebra 2:182–217 · Zbl 0128.25604 · doi:10.1016/0021-8693(65)90018-9
[23] Kyureghyan G.M. (2007) Crooked maps in \(\mathbb F_{2^n}\) . Finite Field Appl. 13:713–726 · Zbl 1170.94009 · doi:10.1016/j.ffa.2006.03.003
[24] Leander G., Poschmann A. (2007) On the classification of 4-bit S-boxes. In: Carlet C., Sunar B. (eds) WAIFI 2007, LNCS 4547. Springer, Berlin, pp. 159–176 · Zbl 1184.94239
[25] LeBel A., Horadam K.J.: Direct sums of balanced functions, perfect nonlinear functions and orthogonal cocycles. J. Combin. Designs (2008) to appear. · Zbl 1136.94006
[26] Nakagawa N., Yoshiara S. (2007) A construction of differentially 4-uniform functions from commutative semifields of characteristic 2. In: Carlet C., Sunar B. (eds). WAIFI 2007, LNCS 4547. Springer, Berlin, pp. 134–146 · Zbl 1213.11196
[27] Perera A.A.I., Horadam K.J. (1998) Cocyclic generalised Hadamard matrices and central relative difference sets. Des. Codes Cryptogr. 15:187–200 · Zbl 0919.05007 · doi:10.1023/A:1008367718018
[28] Pott A. (2004) Nonlinear functions in Abelian groups and relative difference sets. Discrete Appl. Math. 138:177–193 · Zbl 1035.05023 · doi:10.1016/S0166-218X(03)00293-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.