×

Passive scalar mixing and decay at finite correlation times in the Batchelor regime. (English) Zbl 1374.76087

Summary: An elegant model for passive scalar mixing and decay was given by R. H. Kraichnan [Phys. Fluids 11, 945–953 (1968; Zbl 0164.28904)] assuming the velocity to be delta correlated in time. For realistic random flows this assumption becomes invalid. We generalize the Kraichnan model to include the effects of a finite correlation time, \(\tau\), using renewing flows. The generalized evolution equation for the three-dimensional (3-D) passive scalar spectrum \(\hat{M}(k,t)\) or its correlation function \(M(r,t)\), gives the Kraichnan equation when \(\tau\rightarrow 0\), and extends it to the next order in \(\tau\). It involves third- and fourth-order derivatives of \(M\) or \(\hat{M}\) (in the high \(k\) limit). For small-\(\tau\) (or small Kubo number), it can be recast using the Landau-Lifshitz approach to one with at most second derivatives of \(\hat{M}\). We present both a scaling solution to this equation neglecting diffusion and a more exact solution including diffusive effects. To leading order in \(\tau\), we first show that the steady state 1-D passive scalar spectrum, preserves the G. K. Batchelor [“Small-scale variation of convected quantities like temperature in turbulent fluid. I: General discussion and the case of small conductivity”, J. Fluid Mech. 5, No. 1, 113–133 (1959; doi:10.1017/S002211205900009X)] form, \(E_{\theta}(k)\propto k^{-1}\), in the viscous-convective limit, independent of \(\tau\). This result can also be obtained in a general manner using Lagrangian methods. Interestingly, in the absence of sources, when passive scalar fluctuations decay, we show that the spectrum in the Batchelor regime at late times is of the form \(E_{\theta}(k)\propto k^{1/2}\) and also independent of \(\tau\). More generally, finite \(\tau\) does not qualitatively change the shape of the spectrum during decay. The decay rate is however reduced for finite \(\tau\). We also present results from high resolution (\(1024^{3}\)) direct numerical simulations of passive scalar mixing and decay. We find reasonable agreement with predictions of the Batchelor spectrum during steady state. The scalar spectrum during decay is however dependent on initial conditions. It agrees qualitatively with analytic predictions when power is dominantly in wavenumbers corresponding to the Batchelor regime, but is shallower when box-scale fluctuations dominate during decay.

MSC:

76F25 Turbulent transport, mixing

Citations:

Zbl 0164.28904

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, (1972), National Bureau of Standards · Zbl 0543.33001
[2] Adzhemyan, L. T.; Antonov, N. V.; Honkonen, J., Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: two-loop approximation, Phys. Rev. E, 66, 3, (2002) · doi:10.1103/PhysRevE.66.036313
[3] Balkovsky, E.; Chertkov, M.; Kolokolov, I.; Lebedev, V., Fourth-order correlation function of a randomly advected passive scalar, J. Expl Theor. Phys. Lett., 61, 1049-1054, (1995)
[4] Balkovsky, E.; Fouxon, A., Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem, Phys. Rev. E, 60, 4164-4174, (1999) · doi:10.1103/PhysRevE.60.4164
[5] Batchelor, G. K., Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech., 5, 113-133, (1959) · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[6] Bhat, P.; Subramanian, K., Fluctuation dynamo at finite correlation times and the Kazantsev spectrum, Astrophys. J., 791, (2014)
[7] Bhat, P. & Subramanian, K.2015Fluctuation dynamos at finite correlation times using renewing flows. J. Plasma Phys.*81 (5). doi:10.1017/S0022377815000616.
[8] Brandenburg, A.2003Computational aspects of astrophysical MHD and turbulence. In Advances in Nonlinear Dynamos (ed. Ferriz-Mas, A. & Núñez, M.), pp. 269-344. Taylor & Francis. doi:10.1201/9780203493137.ch9 · Zbl 1099.85005
[9] Brandenburg, A.; Dobler, W., Hydromagnetic turbulence in computer simulations, Comput. Phys. Commun., 147, 471-475, (2002) · Zbl 1016.85002 · doi:10.1016/S0010-4655(02)00334-X
[10] Chaves, M.; Eyink, G.; Frisch, U.; Vergassola, M., Universal decay of scalar turbulence, Phys. Rev. Lett., 86, 2305-2308, (2001) · doi:10.1103/PhysRevLett.86.2305
[11] Chaves, M.; Gawedzki, K.; Horvai, P.; Kupiainen, A.; Vergassola, M., Lagrangian dispersion in Gaussian self-similar velocity ensembles, J. Stat. Phys., 113, 5, 643-692, (2003) · Zbl 1137.76388 · doi:10.1023/A:1027348316456
[12] Chertkov, M.; Falkovich, G.; Kolokolov, I.; Lebedev, V., Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: analytic solution, Phys. Rev. E, 51, 5609-5627, (1995) · doi:10.1103/PhysRevE.51.5609
[13] Chertkov, M.; Falkovich, G.; Lebedev, V., Nonuniversality of the scaling exponents of a passive scalar convected by a random flow, Phys. Rev. Lett., 76, 3707-3710, (1996) · doi:10.1103/PhysRevLett.76.3707
[14] Chertkov, M.; Kolokolov, I.; Lebedev, V., Strong effect of weak diffusion on scalar turbulence at large scales, Phys. Fluids, 19, 10, 101703, (2007) · Zbl 1182.76148 · doi:10.1063/1.2793145
[15] Chertkov, M.; Lebedev, V., Decay of scalar turbulence revisited, Phys. Rev. Lett., 90, 3, (2003)
[16] Corrsin, S., On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys., 22, 469-473, (1951) · Zbl 0044.40601 · doi:10.1063/1.1699986
[17] Davidson, P. A.; Kaneda, Y.; Sreenivasan, K. R., Ten Chapters in Turbulence, (2013), Cambridge University Press · Zbl 1261.76003
[18] Dittrich, P.; Molchanov, S. A.; Sokolov, D. D.; Ruzmaikin, A. A., Mean magnetic field in renovating random flow, Astron. Nachr., 305, 119-125, (1984) · Zbl 0599.76137 · doi:10.1002/asna.2113050305
[19] 2016NIST Digital Library of Mathematical Functions (ed. Olver, F. W. J., Olde Daalhuis, A. B., Lozier, D. W., Schneider, B. I., Boisvert, R. F., Clark, C. W., Miller, B. R. & Saunders, B. V.); http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21.
[20] Donzis, D. A.; Sreenivasan, K. R.; Yeung, P. K., The batchelor spectrum for mixing of passive scalars in isotropic turbulence, Flow Turbul. Combust., 85, 3-4, 549-566, (2010) · Zbl 1410.76085 · doi:10.1007/s10494-010-9271-6
[21] Dunster, T. M., Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter, SIAM J. Math. Anal., 21, 4, 995-1018, (1990) · Zbl 0703.33002 · doi:10.1137/0521055
[22] Eyink, G. L.; Xin, J., Self-similar decay in the Kraichnan model of a passive scalar, J. Stat. Phys., 100, 3, 679-741, (2000) · Zbl 1008.76028 · doi:10.1023/A:1018675525647
[23] Falkovich, G.; Gawȩdzki, K.; Vergassola, M., Particles and fields in fluid turbulence, Rev. Mod. Phys., 73, 913-975, (2001) · Zbl 1205.76133 · doi:10.1103/RevModPhys.73.913
[24] Fouxon, A.; Lebedev, V., Spectra of turbulence in dilute polymer solutions, Phys. Fluids, 15, 2060-2072, (2003) · Zbl 1186.76175 · doi:10.1063/1.1577563
[25] Gibson, C. H., Fine structure of scalar fields mixed by turbulence. II. Spectral theory, Phys. Fluids, 11, 2316-2327, (1968) · Zbl 0187.51701 · doi:10.1063/1.1691821
[26] Gilbert, A. D.; Bayly, B. J., Magnetic field intermittency and fast dynamo action in random helical flows, J. Fluid Mech., 241, 199-214, (1992) · Zbl 0755.76096 · doi:10.1017/S0022112092002003
[27] Gotoh, T.; Watanabe, T.; Miura, H., Spectrum of passive scalar at very high schmidt number in turbulence, Plasma Fusion Res., 9, (2014)
[28] Gotoh, T. & Yeung, P. K.2013Passive scalar transport in turbulence. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.). Cambridge University Press. · Zbl 1299.76089
[29] Gruzinov, A.; Cowley, S.; Sudan, R., Small-scale-field dynamo, Phys. Rev. Lett., 77, 4342-4345, (1996) · doi:10.1103/PhysRevLett.77.4342
[30] Haugen, N. E.; Brandenburg, A.; Dobler, W., Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70, 1, (2004) · Zbl 1064.85007
[31] Holden, H.; Karlsen, K. H.; Li, K.-A.; Risebro, N. H., Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs, (2010), European Mathematical Society · Zbl 1191.35005 · doi:10.4171/078
[32] Kazantsev, A. P.1967Enhancement of a magnetic field by a conducting fluid. J. Expl Theor. Phys.53, 1807-1813; (English translation: Sov. Phys. JETP26, 1968, 1031-1034).
[33] Kolekar, S.; Subramanian, K.; Sridhar, S., Mean-field dynamo action in renovating shearing flows, Phys. Rev. E, 86, 2, (2012) · doi:10.1103/PhysRevE.86.026303
[34] Kraichnan, R. H., Small-scale structure of a scalar field convected by turbulence, Phys. Fluids, 11, 945-953, (1968) · Zbl 0164.28904 · doi:10.1063/1.1692063
[35] Kraichnan, R. H., Convection of a passive scalar by a quasi-uniform random straining field, J. Fluid Mech., 64, 737-762, (1974) · Zbl 0291.76022 · doi:10.1017/S0022112074001881
[36] Kulsrud, R. M.; Anderson, S. W., The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field, Astrophys. J., 396, 606-630, (1992) · doi:10.1086/171743
[37] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields, (1975), Pergamon · Zbl 0178.28704
[38] Nazarenko, S.; Laval, J.-P., Non-local two-dimensional turbulence and Batchelor’s regime for passive scalars, J. Fluid Mech., 408, 301-321, (2000) · Zbl 0979.76031 · doi:10.1017/S0022112099007922
[39] Obukhov, S. M., Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., 13, 58-69, (1949)
[40] Schekochihin, A. A.; Haynes, P. H.; Cowley, S. C., Diffusion of passive scalar in a finite-scale random flow, Phys. Rev. E, 70, 4, (2004) · doi:10.1103/PhysRevE.70.046304
[41] Shraiman, B. I.; Siggia, E. D., Scalar turbulence, Nature, 405, 639-646, (2000) · doi:10.1038/35015000
[42] Son, D. T., Turbulent decay of a passive scalar in the Batchelor limit: exact results from a quantum-mechanical approach, Phys. Rev. E, 59, R3811-R3814, (1999) · doi:10.1103/PhysRevE.59.R3811
[43] Sreenivasan, K. R.; Schumacher, J., Lagrangian views on turbulent mixing of passive scalars, Phil. Trans. R. Soc. Lond. A, 368, 1561-1577, (2010) · Zbl 1192.76021 · doi:10.1098/rsta.2009.0140
[44] Szmytkowski, R.; Bielski, S., Comment on the orthogonality of the Macdonald functions of imaginary order, J. Math. Anal. Appl., 365, 195-197, (2010) · Zbl 1186.33009 · doi:10.1016/j.jmaa.2009.10.035
[45] Vergeles, S. S., Spatial dependence of correlation functions in the decay problem for a passive scalar in a large-scale velocity field, J. Expl Theor. Phys., 102, 685-701, (2006) · doi:10.1134/S1063776106040194
[46] Warhaft, Z., Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32, 203-240, (2000) · Zbl 0988.76042 · doi:10.1146/annurev.fluid.32.1.203
[47] Zeldovich, Ya. B.; Molchanov, S. A.; Ruzmaikin, A. A.; Sokoloff, D. D., Intermittency, diffusion and generation in a nonstationary random medium, Sov. Sci. Rev. C. Math. Phys., 7, 1-110, (1988) · Zbl 0642.60039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.