×

zbMATH — the first resource for mathematics

Decentralised coordination of a multi-agent system based on intermittent data. (English) Zbl 1337.93008
Summary: In this paper, we present a novel decentralized and non-cooperative algorithm for estimation and control of a multi-agent system. The control goal is to achieve a balanced formation on a generic closed curve. Different from previous work, each agent only gathers a measurement of its Euclidean distance from the other agents when they are in its proximity. This distance is usually different from the controlled distance along the curve, thus producing an uncertain and intermittent information on the actual spacing among agents. This fleeting data flow is processed by an estimation algorithm to produce an interval estimate of the relative position, which is then used by an ’interval feedback control law’ to steer the system dynamics. The effectiveness of the approach and its performance are demonstrated through an extensive numerical analysis on two representative examples.

MSC:
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/70.736776
[2] DOI: 10.1016/j.automatica.2011.03.012 · Zbl 1227.93005
[3] DOI: 10.1006/jtbi.2002.3065
[4] DOI: 10.1016/j.amc.2010.01.126 · Zbl 1207.93007
[5] DOI: 10.1016/j.automatica.2014.10.066 · Zbl 1309.93006
[6] DOI: 10.1103/PhysRevE.87.022818
[7] DOI: 10.1080/00207170500127701 · Zbl 1134.93333
[8] DOI: 10.1080/0020717031000098994 · Zbl 1040.93050
[9] DOI: 10.1080/00207170110090642 · Zbl 1023.93020
[10] DOI: 10.1016/j.automatica.2011.11.004 · Zbl 1260.93153
[11] DOI: 10.1109/TAC.2004.837589 · Zbl 1366.91027
[12] DOI: 10.1109/MCS.2007.384124
[13] DOI: 10.1137/0150098 · Zbl 0712.92006
[14] DOI: 10.1137/1.9780898717716 · Zbl 1168.65002
[15] DOI: 10.1109/TRO.2009.2022439
[16] DOI: 10.1017/CBO9780511755743
[17] DOI: 10.1109/TAC.2011.2164820 · Zbl 1369.93074
[18] DOI: 10.1109/TAC.2007.898077 · Zbl 1366.93527
[19] DOI: 10.1109/TCNS.2014.2316995 · Zbl 1370.93183
[20] DOI: 10.1080/00207170802549578 · Zbl 1168.93311
[21] DOI: 10.1103/PhysRevLett.75.1226
[22] DOI: 10.1080/00207179.2012.662720 · Zbl 1256.93013
[23] DOI: 10.1109/MPRV.2006.2 · Zbl 05099836
[24] DOI: 10.1016/S0022-5193(05)80441-2
[25] DOI: 10.1080/00207179.2012.727473 · Zbl 1278.93016
[26] DOI: 10.1109/TCST.2012.2200679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.