zbMATH — the first resource for mathematics

Reliable nonlinear state estimation involving time uncertainties. (English) Zbl 1400.93294
Summary: This paper presents a new approach to bounded-error state estimation involving time uncertainties. For a given bounded observation of a continuous-time nonlinear system, it is assumed that neither the values of the observed data nor their acquisition instants are known exactly. For systems described by state-space equations, we prove theoretically and demonstrate by simulations that the proposed constraint propagation approach enables the computation of bounding sets for the systems’ state vectors that are consistent with the uncertain measurements. The bounding property of the method is guaranteed even if the system is strongly nonlinear. Compared with other existing constraint propagation approaches, the originality of the method stems from our definition and use of bounding tubes which enable to enclose the set of all feasible trajectories inside sets. This method makes it possible to build specific operators for the propagation of time uncertainties through the whole trajectory. The efficiency of the approach is illustrated on two examples: the dynamic localization of a mobile robot and the correction of a drifting clock.

93E10 Estimation and detection in stochastic control theory
93C10 Nonlinear systems in control theory
93C85 Automated systems (robots, etc.) in control theory
93C41 Control/observation systems with incomplete information
Full Text: DOI
[1] Alexandre dit Sandretto, J.; Chapoutot, A., Validated explicit and implicit Runge-Kutta methods, Reliable Computing Electronic Edition, 22, (2016), Special issue devoted to material presented at SWIM 2015
[2] Apt, K. R., The essence of constraint propagation, Theoretical Computer Science, 221, 1, 179-210, (1999) · Zbl 0930.68164
[3] Araya, I.; Trombettoni, G.; Neveu, B., A contractor based on convex interval Taylor, (Beldiceanu, N.; Jussien, N.; Pinson, É., Integration of AI and OR techniques in contraint programming for combinatorial optimzation problems: 9th international conference, CPAIOR 2012, Proceedings, (2012), Springer Berlin Heidelberg), 1-16
[4] Bessiere, C., Constraint propagation, (Rossi, F.; van Beek, P.; Walsh, T., Foundations of artificial intelligence, Handbook of constraint programming, Vol. 2, (2006), Elsevier), 29-83
[5] Bethencourt, A.; Jaulin, L., Cooperative localization of underwater robots with unsynchronized clocks, Paladyn, Journal of Behavioral Robotics, 4, 4, (2013)
[6] Bethencourt, A.; Jaulin, L., Solving non-linear constraint satisfaction problems involving time-dependant functions, Mathematics in Computer Science, 8, 3, 503-523, (2014) · Zbl 1302.65122
[7] Blanco, J. L., Gonzalez, J., & Fernandez-Madrigal, J. A. (2008). A pure probabilistic approach to range-only SLAM. In 2008 IEEE international conference on robotics and automation (pp. 1436-1441).
[8] Chabert, G.; Jaulin, L., Contractor programming, Artificial Intelligence, 173, 11, 1079-1100, (2009) · Zbl 1191.68628
[9] Choi, M., Choi, J., Park, J., & Chung, W. K. (2009). State estimation with delayed measurements considering uncertainty of time delay. In 2009 IEEE international conference on robotics and automation (pp. 3987-3992).
[10] Combastel, C. (2005). A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes. In IEEE conference on decision and control (pp. 7228-7234).
[11] Desrochers, B.; Jaulin, L., A minimal contractor for the polar equation: application to robot localization, Engineering Applications of Artificial Intelligence, 55, 83-92, (2016)
[12] Drevelle, V.; Nicola, J., Vibes: A visualizer for intervals and boxes, Mathematics in Computer Science, 8, 3, 563-572, (2014)
[13] Filippova, T. F.; Kurzhanski, A. B.; Sugimoto, K.; Vályi, I., Ellipsoidal state estimation for uncertain dynamical systems, (Milanese, M.; Norton, J.; Piet-Lahanier, H.; Walter, É., Bounding approaches to system identification, (1996), Springer US), 213-238 · Zbl 0865.93009
[14] Gning, A.; Bonnifait, P., Constraints propagation techniques on intervals for a guaranteed localization using redundant data, Automatica, 42, 7, 1167-1175, (2006) · Zbl 1117.93367
[15] Jaulin, L.; Kieffer, M.; Braems, I.; Walter, E., Guaranteed non-linear estimation using constraint propagation on sets, International Journal of Control, 74, 18, 1772-1782, (2001) · Zbl 1023.93020
[16] Jaulin, L.; Kieffer, M.; Didrit, O.; Walter, É., Applied interval analysis, (2001), Springer London
[17] Kurzhanski, A. B.; Filippova, T. F., On the theory of trajectory tubes—A mathematical formalism for uncertain dynamics, viability and control, (Kurzhanski, A. B., Advances in nonlinear dynamics and control: A report from Russia, (1993), Birkhäuser Boston), 122-188 · Zbl 0912.93040
[18] Le Bars, F.; Sliwka, J.; Jaulin, L.; Reynet, O., Set-membership state estimation with fleeting data, Automatica, 48, 2, 381-387, (2012) · Zbl 1260.93153
[19] Mackworth, A. K., Consistency in networks of relations, Artificial Intelligence, 8, 1, 99-118, (1977) · Zbl 0341.68061
[20] Milanese, M.; Vicino, A., Estimation theory for nonlinear models and set membership uncertainty, Automatica, 27, 2, 403-408, (1991) · Zbl 0729.93074
[21] Moore, R., (Interval analysis, Prentice-Hall series in automatic computation, (1966), Prentice-Hall) · Zbl 0176.13301
[22] Moore, R., (Methods and applications of interval analysis, Studies in Applied and Numerical Mathematics, (1979), Society for Industrial Applied Mathematics)
[23] Newman, P., & Leonard, J. (2003). Pure range-only sub-sea SLAM. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422), vol. 2 (pp. 1921-1926).
[24] Raïssi, T.; Ramdani, N.; Candau, Y., Set membership state and parameter estimation for systems described by nonlinear differential equations, Automatica, 40, 10, 1771-1777, (2004) · Zbl 1067.93019
[25] Rohou, S., Reliable robot localization: a constraint-programming approach over dynamical systems, (2017), Université de Bretagne Occidentale, http://www.simon-rohou.fr/research/phd/rohou_thesis.pdf
[26] Rohou, S.; Jaulin, L.; Mihaylova, L.; Le Bars, F.; Veres, S. M., Guaranteed computation of robot trajectories, Robotics and Autonomous Systems, 93, 76-84, (2017)
[27] Van Hentenryck, P.; Michel, L.; Benhamou, F., Constraint programming over nonlinear constraints, Science of Computer Programming, 30, 1, 83-118, (1998), Concurrent Constraint Programming · Zbl 0891.68015
[28] Wilczak, D., Zgliczyńskii, P., Pilarczyk, P., Mrozek, M., Kapela, T., & Galias, Z. et al. (2017). Computer assisted proofs in dynamics group, a c++ package for rigorous numerics. http://capd.ii.uj.edu.pl.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.