×

Beyond kinetic relations. (English) Zbl 1234.74042

Summary: We introduce the concept of kinetic or rate equations for moving defects representing a natural extension of the more conventional notion of a kinetic relation. Algebraic kinetic relations, widely used to model dynamics of dislocations, cracks and phase boundaries, link the instantaneous value of the velocity of a defect with an instantaneous value of the driving force. The new approach generalizes kinetic relations by implying a relation between the velocity and the driving force which is nonlocal in time. To make this relation explicit one may need to integrate a system of kinetic equations. We illustrate the difference between kinetic relation and kinetic equations by working out in full detail a prototypical model of an overdamped defect in a one-dimensional discrete lattice. We show that the minimal nonlocal kinetic description, containing now an internal time scale, is furnished by a system of two ordinary differential equations coupling the spatial location of defect with another internal parameter that describes configuration of the core region.

MSC:

74N20 Dynamics of phase boundaries in solids
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abeyaratne R., Knowles J.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114, 119–154 (1991) · Zbl 0745.73001 · doi:10.1007/BF00375400
[2] Abeyaratne R., Knowles J.K.: Evolution of Phase Transitions, A Continuum Theory. Cambridge University Press, London (2006)
[3] Abeyaratne R., Chu C., James R.D.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Phil. Mag. A 73, 457–497 (1996) · doi:10.1080/01418619608244394
[4] Arndt M., Luskin M.: Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of Frenkel-Kontorova model. Multiscale Model. Simul. 7, 147–170 (2008) · Zbl 1160.82313 · doi:10.1137/070688559
[5] Berestycki H., Hamel F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002) · Zbl 1024.37054 · doi:10.1002/cpa.3022
[6] Braides A., Truskinovsky L.: Asymptotic expansions by {\(\Gamma\)}-convergence. Continuum Mech. Thermodyn. 20(1), 21–62 (2008) · Zbl 1160.74363 · doi:10.1007/s00161-008-0072-2
[7] Braun O.M., Kivshar Y.S.: The Frenkel-Kontorova Model: Concepts, Methods And Applications. Texts and Monographs in Physics. Springer-Verlag, Berlin, Heidelberg (2004) · Zbl 1140.82001
[8] Braun O.M., Kivshar Y.S., Zelenskaya I.I.: Kinks in the Frenkel-Kontorova model with long-range interparticle interactions. Phys. Rev. B 41, 7118–7138 (1990) · doi:10.1103/PhysRevB.41.7118
[9] Carpio A., Bonilla L.L.: Depinning transitions in discrete reaction-diffusion equations. SIAM J. Appl. Math. 63(3), 1056–1082 (2003) · Zbl 1035.34058 · doi:10.1137/S003613990239006X
[10] Celli V., Flytzanis N.: Motion of a screw dislocation in a crystal. J. Appl. Phys. 41(11), 4443–4447 (1970) · doi:10.1063/1.1658479
[11] Dirr N., Yip N.K.: Pinning and depinning phenomena in front propagation in heterogeneous media. Interfaces Free Boundaries 8, 79–109 (2006) · Zbl 1101.35074 · doi:10.4171/IFB/136
[12] Fáth G.: Propagation failure of traveling waves in discrete bistable medium. Physica D 116, 176–190 (1998) · Zbl 0935.35070 · doi:10.1016/S0167-2789(97)00251-0
[13] Flach S., Kladko K.: Perturbation analysis of weakly discrete kinks. Phys. Rev. E 54, 2912–2916 (1996) · doi:10.1103/PhysRevE.54.2912
[14] Furuya K., de Almeida A.M.O.: Soliton energies in the standard map beyond the chaotic threshold. J. Phys. A 20, 6211–6221 (1987) · doi:10.1088/0305-4470/20/18/021
[15] Gruner G., Zawadowski A., Chaikin P.M.: Nonlinear conductivity and noise due to charge-density-wave depinning in NbSe3. Phys. Rev. Lett. 46, 511–515 (1981) · doi:10.1103/PhysRevLett.46.511
[16] Gurtin M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Applied Mathematical Sciences, vol. 137. Springer-Verlag, New York (1999)
[17] Hobart R.: Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948 (1965) · doi:10.1063/1.1714379
[18] Hobart R.: Peierls barrier analysis. J. Appl. Phys. 37, 3573–3576 (1966) · doi:10.1063/1.1708904
[19] Ishibashi Y., Suzuki I.: On the evaluation of the pinning (Peierls) energy of kinks due to discreteness of substrate lattices. J. Phys. Soc. Jpn. 53, 4250–4256 (1984) · doi:10.1143/JPSJ.53.4250
[20] Ishimori Y., Munakata T.: Kink dynamics in the discrete Sine-Gordon system: a perturbational approach. J. Phys. Soc. Jpn. 51, 3367–3374 (1982) · doi:10.1143/JPSJ.51.3367
[21] Joos B.: Properties of solitons in the Frenkel–Kontorova model. Solid State Commun. 42, 709–713 (1982) · doi:10.1016/0038-1098(82)90643-3
[22] Kardar M.: Nonequilibrium dynamics of interfaces and lines. Phys. Rep. 301, 85–112 (1998) · doi:10.1016/S0370-1573(98)00007-6
[23] Keener J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987) · Zbl 0649.34019 · doi:10.1137/0147038
[24] Kladko K., Mitkov I., Bishop A.R.: Universal scaling of wave propagation failure in arrays of coupled nonlinear cells. Phys. Rev. Lett. 84(19), 4505–4508 (2000) · doi:10.1103/PhysRevLett.84.4505
[25] Kresse O., Truskinovsky L.: Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids 51, 1305–1332 (2003) · Zbl 1077.74512 · doi:10.1016/S0022-5096(03)00019-X
[26] Kresse O., Truskinovsky L.: Prototypical lattice model of a moving defect: the role of environmental viscosity. Izvestiya, Phys. Solid Earth 43, 63–66 (2007) · doi:10.1134/S1069351307010065
[27] Lazutkin V.F., Schachmannski I.G., Tabanov M.B.: Splitting of separatrices for standard and semistandard mappings. Physica D 40, 235–348 (1989) · Zbl 0825.58033 · doi:10.1016/0167-2789(89)90065-1
[28] LeFloch P.G.: Hyperbolic Systems of Conservation Laws. ETH Lecture Note Series. Birkhouser, Switzerland (2002)
[29] Li X., E W.: Multiscale modeling of the dynamics of solids at finite temperature. J. Mech. Phys. Solids 53, 1650–1685 (2005) · Zbl 1120.74313 · doi:10.1016/j.jmps.2005.01.008
[30] Maugin G.A.: Material Inhomogeneities in Elasticity. Applied Mathematics and Mathematical Computation: vol 3. Chapman and Hall, London (1993) · Zbl 0797.73001
[31] Pokrovsky V.L.: Splitting of commensurate-incommensurate phase transition. J. Phys. (Paris) 42(6), 761–766 (1981) · doi:10.1051/jphys:01981004206076100
[32] Rice J.R., Ruina A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983) · Zbl 0554.73095 · doi:10.1115/1.3167042
[33] Ruina, A.L.: Constitutive relations for frictional slip. In: Mechanics of Geomaterials, Numerical methods in Engineering, pp 169–187. Willey, New York (1985)
[34] Slemrod M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81, 301–315 (1983) · Zbl 0505.76082
[35] Slepyan L.I.: The relation between the solutions of mixed dynamical problems for a continuous elastic medium and a lattice. Sov. Phys. Doklady 27(9), 771–772 (1982) · Zbl 0541.73115
[36] Slepyan L.I., Cherkaev A., Cherkaev E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436 (2005) · Zbl 1146.74336 · doi:10.1016/j.jmps.2004.08.001
[37] Tadmor E.B., Ortiz M., Phillips R.: Quasicontinuum analysis of defects in solids. Phil. Mag. A 73, 1529–1563 (1996) · doi:10.1080/01418619608243000
[38] Truskinovsky L.: Equilibrium interphase boundaries. Sov. Phys. Doklady 27, 306–331 (1982)
[39] Truskinovsky L.: Dynamics of nonequilibrium phase boundaries in a heat conducting elastic medium. J. Appl. Math. Mech. 51, 777–784 (1987) · Zbl 0679.73059 · doi:10.1016/0021-8928(87)90140-7
[40] Truskinovsky L., Vainchtein A.: Peierls-Nabarro landscape for martensitic phase transitions. Phys. Rev. B 67, 172103 (2003) · doi:10.1103/PhysRevB.67.172103
[41] Truskinovsky L., Vainchtein A.: The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52, 1421–1446 (2004) · Zbl 1079.74012 · doi:10.1016/j.jmps.2003.09.034
[42] Truskinovsky L., Vainchtein A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66, 533–553 (2005) · Zbl 1136.74362 · doi:10.1137/040616942
[43] Truskinovsky L., Vainchtein A.: Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia. Continuum Mech. Thermodyn. 20(2), 97–122 (2008) · Zbl 1160.74398 · doi:10.1007/s00161-008-0069-x
[44] Weiner J.H.: Dislocation velocities in a linear chain. Phys. Rev. 136(3A), 863–868 (1964) · Zbl 0151.46004
[45] Willis C.R., El-Batanouny M., Stancioff P.: Sine-Gordon kinks on a discrete lattice. I. Hamiltonian formalism. Phys. Rev. B 33, 1904–1911 (1986) · doi:10.1103/PhysRevB.33.1904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.