×

Soft evolution of multi-jet final states. (English) Zbl 1388.81105

Summary: We present a new framework for computing resummed and matched distributions in processes with many hard QCD jets. The intricate color structure of soft gluon emission at large angles renders resummed calculations highly non-trivial in this case. We automate all ingredients necessary for the color evolution of the soft function at next-to-leading-logarithmic accuracy, namely the selection of the color bases and the projections of color operators and Born amplitudes onto those bases. Explicit results for all QCD processes with up to 2 5 partons are given. We also devise a new tree-level matching scheme for resummed calculations which exploits a quasi-local subtraction based on the Catani-Seymour dipole formalism. We implement both resummation and matching in the Sherpa event generator. As a proof of concept, we compute the resummed and matched transverse-thrust distribution for hadronic collisions.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy, Eur. Phys. J.C 71 (2011) 1763 [arXiv:1107.2092] [INSPIRE].
[2] ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV with the ATLAS detector, JHEP07 (2013) 032 [arXiv:1304.7098] [INSPIRE].
[3] CMS collaboration, Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, arXiv:1408.3104 [INSPIRE].
[4] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [INSPIRE].
[5] A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun.180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].
[6] T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP12 (2008) 039 [arXiv:0808.3674] [INSPIRE].
[7] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [INSPIRE]. · Zbl 1192.81158
[8] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[9] R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [INSPIRE].
[10] T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun.180 (2009) 2317 [arXiv:0810.0992] [INSPIRE]. · Zbl 1197.81004
[11] C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
[12] G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun.184 (2013) 986 [arXiv:1110.1499] [INSPIRE].
[13] G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J.C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].
[14] F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
[15] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [INSPIRE]. · Zbl 1296.81138
[16] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun.184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].
[17] S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the standard model, JHEP04 (2013) 037 [arXiv:1211.6316] [INSPIRE].
[18] H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev.D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].
[19] Z. Bern et al., Next-to-leading order W + 5-jet production at the LHC, Phys. Rev.D 88 (2013) 014025 [arXiv:1304.1253] [INSPIRE].
[20] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev.D 89 (2014) 034019 [arXiv:1309.6585] [INSPIRE].
[21] G. Cullen et al., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett.111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].
[22] G. Marchesini and B.R. Webber, Simulation of QCD jets including soft gluon interference, Nucl. Phys.B 238 (1984) 1 [INSPIRE].
[23] T. Sjöstrand, A model for initial state parton showers, Phys. Lett.B 157 (1985) 321 [INSPIRE].
[24] G. Marchesini and B.R. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation, Nucl. Phys.B 310 (1988) 461 [INSPIRE].
[25] Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].
[26] W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev.D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].
[27] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP03 (2008) 038 [arXiv:0709.1027] [INSPIRE].
[28] S. Plätzer and S. Gieseke, Coherent parton showers with local recoils, JHEP01 (2011) 024 [arXiv:0909.5593] [INSPIRE]. · Zbl 1214.81306
[29] S. Plätzer and M. Sjödahl, Subleading Ncimproved parton showers, JHEP07 (2012) 042 [arXiv:1201.0260] [INSPIRE].
[30] Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP06 (2012) 044 [arXiv:1202.4496] [INSPIRE].
[31] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP11 (2001) 063 [hep-ph/0109231] [INSPIRE].
[32] M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions:Wbb¯\[ Wb\overline{b} \] + n jets as a case study, Nucl. Phys.B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].
[33] L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP05 (2002) 046 [hep-ph/0112284] [INSPIRE].
[34] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP08 (2002) 015 [hep-ph/0205283] [INSPIRE].
[35] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
[36] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
[37] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
[38] S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP04 (2013) 027 [arXiv:1207.5030] [INSPIRE].
[39] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP12 (2012) 061 [arXiv:1209.6215] [INSPIRE].
[40] L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP03 (2013) 166 [arXiv:1211.7278] [INSPIRE].
[41] K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP05 (2013) 082 [arXiv:1212.4504] [INSPIRE].
[42] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP10 (2013) 222 [arXiv:1309.0017] [INSPIRE].
[43] S. Höche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton showers, arXiv:1405.3607 [INSPIRE].
[44] J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with high energy jets, JHEP06 (2011) 010 [arXiv:1101.5394] [INSPIRE].
[45] M. Dasgupta and G.P. Salam, Event shapes in e+e−annihilation and deep inelastic scattering, J. Phys.G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].
[46] A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP06 (2010) 038 [arXiv:1001.4082] [INSPIRE]. · Zbl 1290.81159
[47] A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP01 (2002) 018 [hep-ph/0112156] [INSPIRE].
[48] A. Banfi, G.P. Salam and G. Zanderighi, Generalized resummation of QCD final state observables, Phys. Lett.B 584 (2004) 298 [hep-ph/0304148] [INSPIRE].
[49] A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP08 (2004) 062 [hep-ph/0407287] [INSPIRE].
[50] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP03 (2005) 073 [hep-ph/0407286] [INSPIRE].
[51] R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N3LL with power corrections and a precision global fit for αs(mZ), Phys. Rev.D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
[52] A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N3LL′including power corrections, arXiv:1411.6633 [INSPIRE].
[53] G. Oderda and G.F. Sterman, Energy and color flow in dijet rapidity gaps, Phys. Rev. Lett.81 (1998) 3591 [hep-ph/9806530] [INSPIRE].
[54] R.B. Appleby and M.H. Seymour, The resummation of interjet energy flow for gaps between jets processes at HERA, JHEP09 (2003) 056 [hep-ph/0308086] [INSPIRE].
[55] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP08 (2006) 059 [hep-ph/0604094] [INSPIRE].
[56] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP09 (2008) 128 [arXiv:0808.1269] [INSPIRE].
[57] J. Forshaw, J. Keates and S. Marzani, Jet vetoing at the LHC, JHEP07 (2009) 023 [arXiv:0905.1350] [INSPIRE].
[58] R.M. Duran Delgado, J.R. Forshaw, S. Marzani and M.H. Seymour, The dijet cross section with a jet veto, JHEP08 (2011) 157 [arXiv:1107.2084] [INSPIRE].
[59] X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev.D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].
[60] ATLAS collaboration, Measurement of dijet production with a veto on additional central jet activity in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV using the ATLAS detector, JHEP09 (2011) 053 [arXiv:1107.1641] [INSPIRE].
[61] ATLAS collaboration, Measurement oftt¯\[ t\overline{t}\] production with a veto on additional central jet activity in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV using the ATLAS detector, Eur. Phys. J.C 72 (2012) 2043 [arXiv:1203.5015] [INSPIRE].
[62] ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV using the ATLAS detector, Eur. Phys. J.C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].
[63] CMS collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, JHEP06 (2012) 036 [arXiv:1202.0704] [INSPIRE].
[64] A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP06 (2012) 159 [arXiv:1203.5773] [INSPIRE].
[65] A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett.109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].
[66] A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP01 (2014) 097 [arXiv:1308.4634] [INSPIRE].
[67] T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP07 (2012) 108 [arXiv:1205.3806] [INSPIRE].
[68] T. Becher, M. Neubert and L. Rothen, Factorization and N3LLp + NNLO predictions for the Higgs cross section with a jet veto, JHEP10 (2013) 125 [arXiv:1307.0025] [INSPIRE].
[69] I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet pTresummation in Higgs production at NNLL′ + NNLO, Phys. Rev.D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].
[70] R. Boughezal, X. Liu, F. Petriello, F.J. Tackmann and J.R. Walsh, Combining resummed Higgs predictions across jet bins, Phys. Rev.D 89 (2014) 074044 [arXiv:1312.4535] [INSPIRE].
[71] H.-N. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, Phys. Rev.D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].
[72] M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP10 (2012) 126 [arXiv:1207.1640] [INSPIRE].
[73] Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass at hadron colliders, Phys. Rev.D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].
[74] T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev.D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].
[75] A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP06 (2013) 108 [arXiv:1305.0007] [INSPIRE]. · Zbl 1342.81689
[76] A.J. Larkoski and J. Thaler, Unsafe but calculable: ratios of angularities in perturbative QCD, JHEP09 (2013) 137 [arXiv:1307.1699] [INSPIRE].
[77] A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP04 (2014) 017 [arXiv:1401.2158] [INSPIRE].
[78] A.J. Larkoski, I. Moult and D. Neill, Toward multi-differential cross sections: measuring two angularities on a single jet, JHEP09 (2014) 046 [arXiv:1401.4458] [INSPIRE].
[79] A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
[80] E. Gerwick, S. Schumann, B. Gripaios and B. Webber, QCD jet rates with the inclusive generalized ktalgorithms, JHEP04 (2013) 089 [arXiv:1212.5235] [INSPIRE].
[81] M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
[82] M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J.C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].
[83] A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
[84] A. Broggio, A. Ferroglia, B.D. Pecjak and Z. Zhang, NNLO hard functions in massless QCD, JHEP12 (2014) 005 [arXiv:1409.5294] [INSPIRE].
[85] P. Hinderer, F. Ringer, G.F. Sterman and W. Vogelsang, Toward NNLL threshold resummation for hadron pair production in hadronic collisions, Phys. Rev.D 91 (2015) 014016 [arXiv:1411.3149] [INSPIRE].
[86] Y. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form-factor, Phys. Lett.B 631 (2005) 118 [hep-ph/0508130] [INSPIRE].
[87] Y. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP01 (2006) 007 [hep-ph/0509078] [INSPIRE].
[88] N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys.B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].
[89] R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross-sections, Phys. Lett.B 575 (2003) 268 [hep-ph/0307035] [INSPIRE]. · Zbl 1094.81559
[90] S. Catani, M. Ciafaloni and G. Marchesini, Noncancelling infrared divergences in QCD coherent state, Nucl. Phys.B 264 (1986) 588 [INSPIRE].
[91] S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett.B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
[92] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[93] A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept.100 (1983) 201 [INSPIRE].
[94] M. Sjödahl, Color evolution of 2 → 3 processes, JHEP12 (2008) 083 [arXiv:0807.0555] [INSPIRE].
[95] M. Sjödahl, Color structure for soft gluon resummation: a general recipe, JHEP09 (2009) 087 [arXiv:0906.1121] [INSPIRE].
[96] M. Sjödahl, ColorMath — a package for color summed calculations in SU(Nc), Eur. Phys. J.C 73 (2013) 2310 [arXiv:1211.2099] [INSPIRE].
[97] S. Keppeler and M. Sjödahl, Orthogonal multiplet bases in SU(Nc) color space, JHEP09 (2012) 124 [arXiv:1207.0609] [INSPIRE]. · Zbl 1397.81452
[98] C. Duhr, S. Höche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [INSPIRE].
[99] T. Gleisberg et al., SHERPA 1.α: a proof of concept version, JHEP02 (2004) 056 [hep-ph/0311263] [INSPIRE].
[100] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
[101] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE].
[102] V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys.B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].
[103] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
[104] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev.D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
[105] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE].
[106] A. Schofield and M.H. Seymour, Jet vetoing and HERWIG++, JHEP01 (2012) 078 [arXiv:1103.4811] [INSPIRE].
[107] S. Plätzer, Summing large-N towers in colour flow evolution, Eur. Phys. J.C 74 (2014) 2907 [arXiv:1312.2448] [INSPIRE].
[108] A. Schofield, Simulation of colour evolution in QCD scattering processes, Ph.D. thesis, University of Manchester, Manchester U.K. (2013).
[109] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys.B 312 (1989) 616 [INSPIRE].
[110] S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP04 (2011) 024 [arXiv:1008.5399] [INSPIRE].
[111] M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett.B 512 (2001) 323 [hep-ph/0104277] [INSPIRE]. · Zbl 0969.81646
[112] M. Dasgupta and G.P. Salam, Accounting for coherence in interjet Etflow: a case study, JHEP03 (2002) 017 [hep-ph/0203009] [INSPIRE].
[113] M. Cacciari, G.P. Salam and G. Soyez, The anti-ktjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
[114] A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP08 (2002) 006 [hep-ph/0206076] [INSPIRE].
[115] M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev.D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].
[116] Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite Nc, Nucl. Phys.B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE]. · Zbl 1282.81186
[117] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].
[118] D0 collaboration, I.A. Bertram, Jet results at the D0 experiment, Acta Phys. Polon.B 33 (2002) 3141 [INSPIRE].
[119] CDF collaboration, T. Aaltonen et al., Measurement of event shapes in proton-antiproton collisions at center-of-mass energy 1.96 TeV, Phys. Rev.D 83 (2011) 112007 [arXiv:1103.5143] [INSPIRE].
[120] ATLAS collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, Eur. Phys. J.C 72 (2012) 2211 [arXiv:1206.2135] [INSPIRE].
[121] CMS collaboration, Study of hadronic event-shape variables in multijet final states in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, JHEP10 (2014) 087 [arXiv:1407.2856] [INSPIRE].
[122] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron-hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.