×

Sinc-Galerkin solution to the clamped plate eigenvalue problem. (English) Zbl 1456.65150

Summary: We propose an accurate and computationally efficient numerical technique for solving the biharmonic eigenvalue problem. The technique is based on the sinc-Galerkin approximation method to solve the clamped plate problem. Numerical experiments for plates with various aspect ratios are reported, and comparisons are made with other methods in literature. The calculated results accord well with those published earlier, which proves the accuracy and validity of the proposed method.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bardell, N.S., Dunsdon, J.M., Langley, R.S.: Free vibration of coplanar sandwich panels. Compos. Struct. 38, 463-475 (1997) · doi:10.1016/S0263-8223(98)80015-9
[2] Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of non-linear partial differential equations. J. Comput. Phys. 10, 40-52 (1972) · Zbl 0247.65061 · doi:10.1016/0021-9991(72)90089-7
[3] Bellomo, N., Ridolfi, L.: Solution of nonlinear initial -boundary value problems by sinc-collocation-interpolation methods. Comput. Math. Appl. 29, 15-28 (1995) · Zbl 0822.65075 · doi:10.1016/0898-1221(94)00234-C
[4] Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[5] Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357-375 (1991) · Zbl 0735.65052 · doi:10.1093/imanum/11.3.357
[6] Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63, 97-107 (1999) · Zbl 0940.65119 · doi:10.1007/s006070050053
[7] Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM J. Numer. Anal. 13, 734-752 (1976) · Zbl 0359.65029 · doi:10.1137/0713060
[8] Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132-156 (2014) · doi:10.1016/j.ast.2014.04.005
[9] Chen, W., Zhong, T.X.: A note on the DQ analysis of anisotropic plates. J. Sound Vib. 204, 180-182 (1997) · doi:10.1006/jsvi.1996.0895
[10] Cheung, Y.K., Chen, W.J.: Hybrid quadrilateral element based on Mindlin/Reissner plate theory. Comput. Struct. 32, 327-339 (1989) · Zbl 0711.73241 · doi:10.1016/0045-7949(89)90044-8
[11] Chia, C.Y.: Non-linear vibration of anisotropic rectangular plates with non-uniform edge constraints. J. Sound Vib. 101, 539-550 (1985) · doi:10.1016/S0022-460X(85)80070-5
[12] Cook, T.: Comparison of finite difference, spectral and sinc biharmonic operators. M.sc thesis, University of Utah (2004) · Zbl 0747.65002
[13] Donning, B.M., Liu, W.K.: Meshless methods for shear-deformable beams and plates. Comput. Methods Appl. Mech. Eng. 152, 47-71 (1998) · Zbl 0959.74079 · doi:10.1016/S0045-7825(97)00181-3
[14] El-Gamel, M.: Sinc-collocation method for solving linear and nonlinear system of second-order boundary value problems. Appl. Math. 3, 1627-1633 (2012) · doi:10.4236/am.2012.311225
[15] El-Gamel, M.: Numerical solution of Troesch’s problem by sinc-collocation method. Appl. Math. 4, 707-712 (2013) · doi:10.4236/am.2013.44098
[16] El-Gamel, M., Behiry, S., Hashish, H.: Numerical method for the solution of special nonlinear fourth-order boundary value problems. Appl. Math. Comp. 145, 717-734 (2003) · Zbl 1033.65065 · doi:10.1016/S0096-3003(03)00269-8
[17] El-Gamel, M., Cannon, J.R., Zayed, A.: Sinc-galerkin method for solving linear sixth order boundary-value problems. Math. Comp. 73, 1325-1343 (2004) · Zbl 1054.65085 · doi:10.1090/S0025-5718-03-01587-4
[18] El-Gamel, M., Mohsen, A., El-Mohsen, A.A.: Sinc-Galerkin method for solving biharmonic problems. Appl. Math. Comp. 247, 386-396 (2014) · Zbl 1338.65253 · doi:10.1016/j.amc.2014.08.086
[19] Fan, S.C., Cheung, Y.K.: Flexural free vibrations of rectangular plates with complex support conditions. J. Sound Vib. 93, 81-94 (1984) · doi:10.1016/0022-460X(84)90352-3
[20] Geannakakes, G.N.: Natural frequencies of arbitrarily shaped plates using the Rayleigh-Ritz method together with natural co-ordinate regions and normalized characteristic polynomials. J. Sound Vib. 182, 441-478 (1995) · doi:10.1006/jsvi.1995.0210
[21] Gavalas, G., El-Raheb, M.: Extension of Rayleigh-Ritz method for eigenvalue problems with discontinuous boundary conditions applied to vibration of rectangular plates. J. Sound Vib. 333, 4007-4016 (2014) · doi:10.1016/j.jsv.2014.03.030
[22] Gorman, D.J.: Free Vibration Analysis of Rectangular Plates. Elsevier, New York (1982) · Zbl 0478.73037
[23] Gorman, D.J.: An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions. J. Sound Vib. 93, 235-247 (1984) · Zbl 0538.73082 · doi:10.1016/0022-460X(84)90310-9
[24] Gorman, D.J., Yu, S.D.: A review of the superposition method for computing free vibration eigenvalues of elastic structures. Comput. Struct. 104, 27-37 (2012) · doi:10.1016/j.compstruc.2012.02.018
[25] Grenander, V., Szego, G.: Toeplitz Forms and Their Applications, 2nd edn. Chelsea Publishing Co, Orlando (1985) · Zbl 0080.09501
[26] Keer, L.M., Stahl, B.: Eigenvalue problems of rectangular plates with mixed edge conditions. J. Appl. Mech. 39, 513-520 (1972) · Zbl 0235.73025 · doi:10.1115/1.3422709
[27] Leipholz, H.H.E.: On some developments in direct methods of the calculus of variations. Appl. Mech. Rev. 40, 1379-1392 (1987) · doi:10.1115/1.3149540
[28] Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257-293 (1973) · Zbl 0268.73033 · doi:10.1016/S0022-460X(73)80371-2
[29] Liew, K.M., Hung, K.C., Lam, K.Y.: On the use of the substructure method for vibration analysis of rectangular plates with discontinuous boundary conditions. J. Sound Vib. 163, 451-462 (1993) · Zbl 0925.73374 · doi:10.1006/jsvi.1993.1181
[30] Liew, K.M., Xiang, Y., Kitipornchai, S.: Transverse vibration of thick rectangular plates-I. compressive sets of boundary conditions. Comput. Struct. 49, 1-29 (1993) · doi:10.1016/0045-7949(93)90122-T
[31] Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992) · Zbl 0753.65081 · doi:10.1137/1.9781611971637
[32] McArthur, K., Bowers, K., Lund, J.: The sinc method in multiple space dimensions: model problems. Numer. Math. 56, 789-816 (1990) · Zbl 0697.65079 · doi:10.1007/BF01405289
[33] Mohsen, A., El-Gamel, M.: A sinc-collocation method for the linear Fredholm integro-differential equations. Z. Angew. Math. Phys. 58, 380-390 (2007) · Zbl 1116.65131 · doi:10.1007/s00033-006-5124-5
[34] Mohsen, A., El-Gamel, M.: On the Galerkin and collocation methods for two-point boundary value problems using sinc bases. Comput. Math. Appl. 56, 930-941 (2008) · Zbl 1155.65365 · doi:10.1016/j.camwa.2008.01.023
[35] Mohsen, A., El-Gamel, M.: On the numerical solution of linear and nonlinear Volterra integral and integro-differential equations. Appl. Math. Comput. 217, 3330-3337 (2010) · Zbl 1204.65158
[36] Neudecker, H.: A note on Kronecker matrix products and matrix equation systems. SIAM J. Appl. Math. 17, 603-606 (1969) · Zbl 0185.08204 · doi:10.1137/0117057
[37] Nowacki, W.: Free vibrations and buckling of a rectangular plate with discontinuous boundary conditions. Bull. Acad. Pol. Sci. Biol. 3, 159-167 (1955) · Zbl 0067.17701
[38] Ota, T., Hamada, M.: Fundamental frequencies of simply supported but partially clamped square plates. Bull. Jpn. Soc. Mech. Eng. 6, 397-403 (1963) · doi:10.1299/jsme1958.6.397
[39] Piskunov, V.H.: Determination of the frequencies of the natural oscillations of rectangular plates with mixed boundary conditions. Prikl. Mekh. 10, 72-76 (1964). (in Ukrainian)
[40] Ralph, C., Bowers, K.: The sinc-Galerkin method for fourth-order differential equations. SIAM J. Numer. Anal. 28, 760-788 (1991) · Zbl 0735.65058 · doi:10.1137/0728041
[41] Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve twodimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15, 791-798 (1992) · Zbl 0762.76085 · doi:10.1002/fld.1650150704
[42] Sidi, Avram: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305-337 (1991) · Zbl 0747.65002 · doi:10.1016/0377-0427(91)90013-A
[43] Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993) · Zbl 0803.65141 · doi:10.1007/978-1-4612-2706-9
[44] Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-hill, New York (1959) · Zbl 0114.40801
[45] Žitňan, P.: Vibration analysis of membranes and plates by a discrete least squares technique. J. Sound Vib. 4, 595-605 (1996)
[46] Wieners, C.: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59, 29-41 (1997) · Zbl 0883.65082 · doi:10.1007/BF02684402
[47] Yin, G.: Sinc-collocation method with orthogonalization for singular problem-like Poisson. Math. Comput. 62, 21-40 (1994) · Zbl 0796.65121 · doi:10.1090/S0025-5718-1994-1203738-7
[48] Young, D.: Vibration of rectangular plates by the Ritz method. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 17, 448-453 (1950) · Zbl 0039.20701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.