×

Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. (English) Zbl 1195.76328

Summary: This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for high strain Lagrangian hydrodynamics with material strength. In ASPH, the isotropic kernel in the standard SPH is replaced with an anisotropic kernel whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Except for the features inherited from the standard SPH, ASPH can capture dimension-dependent features such as anisotropic deformations with a more generalized elliptical or ellipsoidal influence domain. Two numerical examples, the impact of a plate against a rigid surface and the penetration of a cylinder through a plate, are investigated using both SPH and ASPH. The comparative studies show that ASPH has better accuracy than the standard SPH when being used for high strain hydrodynamic problems with inherent anisotropic deformations.

MSC:

76M28 Particle methods and lattice-gas methods
74M20 Impact in solid mechanics

Software:

Mfree2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992) · Zbl 0763.73052 · doi:10.1016/0045-7825(92)90042-I
[2] Charles, E.A. Jr.: An overview of the theory of hydrocodes. Int. J. Impact Eng. 5, 33–59 (1987) · doi:10.1016/0734-743X(87)90029-7
[3] Hans, U.M.: Review: hydrocodes for structure response to underwater explosions. Shock Vib. 6(2), 81–96 (1999)
[4] Liberskty, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A.: High strain Lagrangian hydrodynamics. J. Comput. Phys. 109, 67–75 (1993) · Zbl 0791.76065 · doi:10.1006/jcph.1993.1199
[5] Swegle, J.W., Attaway, S.W.: On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput. Mech. 17, 151–168 (1995) · Zbl 0841.76073 · doi:10.1007/BF00364078
[6] Walters, W.P., Zukas, J.A.: Fundamentals of shaped charges. Wiley (1989)
[7] Liu, G.R.: Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton, FL (2002)
[8] Liu, G.R., Liu, M.B.: Smoothed particle hydrodynamics–a meshfree particle method, World Scientific, Singapore (2003) · Zbl 1046.76001
[9] Lucy, L.: A numerical approach to testing the fission hypothesis. Astron. J. 82, 1013–1024 (1977) · doi:10.1086/112164
[10] Gingold, R.A., Monaghan, J.J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977) · Zbl 0421.76032
[11] Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992) · doi:10.1146/annurev.aa.30.090192.002551
[12] Randles, P.W., Libersky, L.D. Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139, 375–408 (1996) · Zbl 0896.73075 · doi:10.1016/S0045-7825(96)01090-0
[13] Liu, M.B., Liu, G.R., Zong, Z., Lam, K.Y.: Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology. Comput. Fluids 32(3), 305–322 (2003a) · Zbl 1009.76525 · doi:10.1016/S0045-7930(01)00105-0
[14] Liu, M.B., Liu, G.R., Zong, Z., Lam, K.Y.: Smoothed particle hydrodynamics for numerical simulation of underwater explosions. Comput. Mech. 30(2), 106–118 (2003b) · Zbl 1128.76352 · doi:10.1007/s00466-002-0371-6
[15] Libersky, L.D., Petscheck, A.G.: Smoothed particle hydrodynamics with strength of materials, In: Proceedings of The Next Free Lagrange Conference, Springer-Verlag, New York, pp. 248–257 (1991)
[16] Johnson, G.R., Petersen, E.H., Stryk, R.A.: Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations. Int. J. Impact Eng. 14, 385–394 (1993) · doi:10.1016/0734-743X(93)90036-7
[17] Johnson, G.R., Stryk, R.A., Beissel, S.R.: SPH for high velocity impact computations, Comput. Methods Appl. Mech. Eng. 139, 347–373 (1996) · Zbl 0895.76069 · doi:10.1016/S0045-7825(96)01089-4
[18] Plimpton, S.J., Attaway, S., Hendrickson, B., Swegle, J., Vaughan, C., Gardner, D.: Parallel transient dynamics simulations: algorithms for contact detection and smoothed particle hydrodynamics. J. Parallel Distr. Commun. 50, 104–122 (1998) · Zbl 0910.68230 · doi:10.1006/jpdc.1998.1433
[19] Brown, K., Attaway, S., Plimpton, S.J., Hendrickson, B.: Parallel strategies for crash and impact simulations, Comput. Methods Appl. Mech. Eng. 184, 375–390 (2000) · Zbl 0967.74077 · doi:10.1016/S0045-7825(99)00235-2
[20] Bicknell, G.V., Gingold, R.A.: On tidal detonation of star by massive black holes. Astrophys. J. 273, 749–760 (1983) · doi:10.1086/161410
[21] Shapiro, P.R., Martel, H., Villumsen, J.V., Kang, H.: Smoothed particle hydrodynamics and the simulation of galaxy and large-scale structure formation. Rev. Mexi. Astron. Astrofis. 27, 187–190 (1993)
[22] Fulbright, M.S., Benz, W.: A method of smoothed particle hydrodynamics using spheroid kernels. Astron. J. 440, 254–262 (1995)
[23] Shapiro, P.R., Martel, H., Villumsen, J.V., Owen, J.M.: Adaptive smoothed particle hydrodynamics, with application to cosmology: methodology. Astrophys. J. Suppl. S. 103, 269–330 (1996) · doi:10.1086/192279
[24] Owen, J.M., Villumsen, J.V., Shapiro, P.R., Martel, H.: Adaptive smoothed particle hydrodynamics: methodology. II. Astrophys. J. Suppl. S. 116, 155–209 (1998) · doi:10.1086/313100
[25] Liu, M.B., Liu, G.R.: Meshfree particle simulation of micro channel flows with surface tension. Comput. Mech. 35, 332–341 (2005) · Zbl 1109.76355 · doi:10.1007/s00466-004-0620-y
[26] Zukas, J.A.: High velocity impact, Wiley, New York (1990)
[27] Tillotson, J.H.: Metallic equations of state for hypervelocity impact. GA-3216, General Atomic, San Diego, CA (1962)
[28] Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, pp. 541–547 (1983)
[29] Benz, W.: Smoothed particle hydrodynamics: a review. NATO Workshop, Les Arcs, France (1989)
[30] Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985) · Zbl 0622.76054
[31] Hiermaier, S., Konke, D., Stilp, A.J., Thoma, K.: Computational simulation of the hypervelocity impact of Al-sphere on thin plates of different materials. Int. J. Impact Eng. 20(1–5), 363–374 (1997) · doi:10.1016/S0734-743X(97)87507-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.