×

Catastrophic event phenomena in communication networks: a survey. (English) Zbl 1344.68021

Comput. Sci. Rev. 18, 10-45 (2015); corrigendum ibid. 20, 51 (2016).
Summary: With the rise of the Internet, there has been increased interest in the use of computer models to study the dynamics of communication networks. An important aspect of this trend has been the study of dramatic, but relatively infrequent, events that result in abrupt and often catastrophic changes in network state. In the research literature, such catastrophic events have been commonly referred to as phase transitions. As interest in phase transitions in communication networks has grown, different approaches to the study of such phenomena have arisen. These approaches are based on differing goals of the researchers, differing investigative methods, and selection of different causal agents to study. While researchers using various approaches have made progress in understanding phase transition phenomena in communication networks, today there is only an incomplete understanding of the overall state of knowledge on this topic and no agreement on a common explanation of how such events occur in communication networks. To provide better understanding of the work done so far, this paper surveys research on phase transitions in communication networks and summarizes what has been learned. The paper identifies four different approaches taken by researchers studying this topic, describes the scope of the work done, identifies the contributions that have thus far been made, and characterizes differences in views on the nature of phase transitions in communication networks. An assessment is also made of weaknesses in the work that has been done, most notably the lack of realism in network models used to date. This survey discusses characteristics of real-world communication networks that need to be included in such models to improve their realism.

MSC:

68M10 Network design and communication in computer systems
68M11 Internet topics
68M15 Reliability, testing and fault tolerance of networks and computer systems
68R10 Graph theory (including graph drawing) in computer science
68-02 Research exposition (monographs, survey articles) pertaining to computer science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Solé, R.; Valverde, S., Information transfer and phase transitions in a model of Internet traffic, Physica A, 289, 595-605 (2001) · Zbl 0971.68500
[2] Echenique, P.; Gomez-Gardenes, J.; Moreno, Y., Dynamics of jamming transitions in complex networks, Europhys. Lett., 71, 2, 056105-1-056105-5 (2005)
[3] Wu, Z.; Wang, W.; Yeung, K., Traffic dynamics in scale-free networks with limited buffers and decongestion strategy, New J. Phys., 10, 023025-1-023025-12 (2008)
[4] De Martino, D.; Dall’Asta, L.; Bianconi, G.; Marsili, M., Congestion phenomena on complex networks, Phys. Rev. E, 79, 015101-1-015101-4 (2009)
[6] Woolf, M.; Arrowsmith, D.; Mondragón, R.; Pitts, J., Optimization and phase transitions in a chaotic model of data traffic, Phys. Rev. E, 66, 046106-1-046106-11 (2002)
[7] Arrowsmith, D.; Mondragón, R.; Pitts, J.; Woolf, M., Phase transitions in packet traffic on regular networks a comparison of source types and topologies. Report 08, 2004/2005 (2004), Institut Mittag-Leffler
[10] Wang, W.; Wu, Z.; Jiang, R.; Chen, G.; Lai, Y., Abrupt transition to complete congestion on complex networks and control, Chaos, 19, 033106-1-033106-7 (2009)
[11] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 6, 066117-1-066117-8 (2001)
[12] Moreno, Y.; Gomez, J.; Pacheco, A., Instability of scale-free networks under node-breaking avalanches, Europhys. Lett., 58, 4, 630-636 (2002)
[14] Zou, C.; Towsley, D.; Gong, W., Modeling and simulation study of the propagation and defense of Internet email worm, IEEE Trans. Dependable Secure Comput., 4, 2, 105-118 (2007)
[15] Motter, A.; Lai, Y., Cascade-based attacks on complex networks, Phys. Rev. E, 66, 065102-1-065102-4 (2002)
[16] Zhao, L.; Park, K.; Lai, Y., Attack vulnerability of scale-free networks due to cascading breakdown, Phys. Rev. E, 70, 035101-1-035101-4 (2004)
[17] Watts, D., A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, 99, 9, 5766-5771 (2002) · Zbl 1022.90001
[18] Moreno, Y.; Pastor-Satorras, R.; Vazquez, A.; Vespignani, A., Critical load and congestion instabilities in scale-free networks, Europhys. Lett., 62, 2, 292-298 (2003)
[19] Lai, Y.; Motter, A.; Nishikawa, T., Attacks and cascades in complex networks, Lecture Notes in Phys., 650, 299-310 (2004) · Zbl 1124.94303
[21] Lee, E.; Goh, K.; Kahng, B.; Kim, D., Robustness of the avalanche dynamics in data packet transport on scale-free networks, Phys. Rev. E, 71, 056108-1-056108-4 (2005)
[22] Mukherjee, G.; Manna, S., Phase transition in a directed traffic flow network, Phys. Rev. E, 71, 066108-1-066108-6 (2005)
[23] Cohen, R.; Erez, K.; Avaraham, D.; Havlin, S., Breakdown of the Internet under intentional attack, Phys. Rev. Lett., 86, 3682-3685 (2001)
[24] Newman, M., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[25] Boccalettia, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwanga, D., Complex networks: Structure and dynamics, Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002
[26] Dorogovtsev, S.; Goltsev, A.; Mendes, J., Critical phenomena in complex networks, Rev. Mod. Phys., 80, 4, 1275-1355 (2008)
[27] da Fontoura Costa, L.; Oliveira, O.; Travieso, G.; Rodrigues, F. Aparecido; Villas Boas, P. Ribeiro; Antiqueira, L.; Viana, M. Palhares; da Rocha, L. Correa, Analyzing and modeling real-world phenomena with complex networks: A survey of applications, Adv. Phys., 60, 3, 329-412 (2011)
[28] Cooper, C.; Frieze, A., A general model for web graphs, Random Structures Algorithms, 22, 3, 311-335 (2003) · Zbl 1018.60007
[29] Erdös, P.; Rényi, A., On the evolution of random graphs, Bull. Inst. Internat. Statist., 38, 4, 343-347 (1961) · Zbl 0106.12006
[30] Barabási, A.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[31] Solé, R.; Manrubia, S.; Luque, B.; Delgado, J.; Bascompte, J., Phase transitions and complex systems: Simple, nonlinear models capture complex systems at the edge of chaos, Complexity, 1, 4, 13-26 (1996)
[32] Hinrichsen, H., Non-equilibrium phase transitions, Physica A, 369, 1, 1-28 (2006)
[34] Piraveenan, M.; Prokopenko, M.; Zomaya, A., Local assortativity and growth of Internet, Eur. Phys. J. B, 70, 275-285 (2009)
[35] Jaeger, G., The Ehrenfest classification of phase transitions: Introduction and evolution, Arch. Hist. Exact Sci., 53, 1, 51-81 (1998) · Zbl 0907.01036
[36] Nakanishi, H.; Stanley, H., A test of scaling near the bond percolation threshold?, J. Phys. A: Math. Gen., 11, 8, L189-L197 (1978)
[37] Ehrenfast, P., Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach dem entspechenden Singularitaeten des thermodynamischen Potentiales, Verhandel. Konink. Akad. Weten., 36, 153-157 (1933), Communications from the Physical Laboratory of the University of Leiden, Supplement Number 75b (in German)
[38] Kadanoff, L., More is the same; phase transitions and mean field theories, J. Stat. Phys., 137, 5, 777-797 (2009) · Zbl 1182.82005
[39] ben-Avraham, D.; Havlin, S., Diffusion and Reaction in Fractals and Disordered Systems (2000), Cambridge University Press: Cambridge University Press Cambridge England · Zbl 1075.82001
[40] Rykalova, Y.; Levitan, L.; Brower, R., Critical phenomena in discrete-time interconnection networks, Physica A, 389, 22, 5259-5278 (2010)
[41] Sarkar, S.; Mukherjee, K.; Ray, A.; Srivastav, A.; Wettergren, T., Statistical mechanics-inspired modeling of heterogeneous packet transmission in communication networks, IEEE Trans. Syst. Man Cybern. Part B Cybern., 42, 4, 1083-1094 (2012)
[42] Smith, R., The dynamics of Internet traffic: Self-similarity, self-organization, and complex phenomena, Adv. Complex Syst., 14, 6, 905-994 (2011)
[43] Bollobás, B., The evolution of random graphs, Trans. Amer. Math. Soc., 286, 1, 257-274 (1984) · Zbl 0579.05046
[44] Molloy, M.; Reed, B., A critical point for random graphs with a given degree sequence, Random Struct. Algorithms, 6, 2-3, 161-180 (1995) · Zbl 0823.05050
[45] Cohen, R.; Erez, K.; ben-Avraham, D.; Havlin, S., Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85, 21, 4626-4628 (2000)
[46] Newman, M.; Strogatz, S.; Watts, D., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118-1-026118-17 (2001)
[47] Cohen, R.; ben-Avraham, D.; Havlin, S., Percolation critical exponents in scale-free networks, Phys. Rev. E, 66, 036113-1-036113-4 (2002)
[48] Bollobás, B.; Janson, S.; Riordan, O., The phase transition in inhomogeneous random graphs, Random Structures Algorithms, 31, 1, 3-122 (2006) · Zbl 1123.05083
[49] Moore, C.; Newman, M., Exact solution on bond percolation in the small-world model, Phys. Rev. E, 62, 7059-7064 (2000)
[50] Albert, R.; Jeong, H.; Barabási, A., Attack and error tolerance of complex networks, Nature, 406, 378-382 (2000)
[51] Callaway, D.; Newman, M.; Strogatz, S.; Watts, D., Network robustness and fragility: Percolation on random graphs, Phys. Rev. E, 85, 5468-5471 (2000)
[52] Grimmett, G., Percolation (1989), Springer-Verlag · Zbl 0691.60089
[53] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (1994), Taylor and Francis
[54] Bollobás, B.; Riordan, O., Percolation (2006), Cambridge University Press · Zbl 1118.60001
[55] Christensen, K., Percolation Theory, 40 (2002), Massachusetts Institute of Technology
[56] Buldyrev, S.; Parshani, R.; Paul, G.; Stanley, H.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025-1028 (2010)
[57] Li, W.; Bashan, A.; Buldyrev, S.; Stanley, H.; Havlin, S., Cascading failures in interdependent lattice networks: The critical role of the length of dependency links, Phys. Rev. Lett., 108, 228702-1-228702-5 (2012)
[58] Corominas-Murtra, B., Percolation of arbitrary uncorrelated nested subgraphs, Eur. Phys. J. B, B77, 2, 213-217 (2010) · Zbl 1515.82078
[59] Zhao, J.; Zhou, H.; Liu, Y., Inducing effect on the percolation transition in complex networks, Nature Commun., 4, 12, 2412-1-2412-5 (2013)
[60] Hu, Y.; Ksherim, B.; Cohen, R.; Havlin, S., Percolation in interdependent and interconnected networks: Abrupt change from second to first order transition, Phys. Rev. E, 84, 066116-1-066116-6 (2011)
[61] Hu, Y.; Zhou, D.; Zhang, R.; Han, Z.; Havlin, S., Percolation in interdependent networks with inter-similarity, Phys. Rev. E, 88, 052805-1-052805-15 (2013)
[62] Huang, X.; Gao, J.; Buldyrev, S.; Havlin, S.; Stanley, H., Robustness of interdependent networks under targeted attack, Phys. Rev. E, 83, 065101-1-065101-4 (2011), S
[63] Willinger, W.; Govindan, R.; Jamin, S.; Paxson, V.; Shenker, S., Scaling phenomena in the Internet: Critically examining criticality, Proc. Natl. Acad. Sci. USA, 99, Supplement 1, 2573-2580 (2002)
[64] Zhou, S.; Mondragón, R., Accurately modeling the Internet topology, Phys. Rev. E, 70, 6, 066108-1-066108-8 (2004)
[65] Alderson, D.; Willinger, W., A contrasting look at self-organization in the internet and next-generation communication networks, IEEE Commun. Mag., 43, 7, 94-100 (2005)
[67] Oliveira, R.; Pei, D.; Willinger, W.; Zhang, B.; Zhang, L., In search of the elusive ground truth: The Internet’s AS-level connectivity structure, ACM SIGMETRICS Perform. Eval. Rev., 36, 1, 217-228 (2008)
[68] Kermack, W.; McKendrick, A., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115, 772, 700-721 (1927), Containing Papers of a Mathematical and Physical Character · JFM 53.0517.01
[69] Moreno, Y.; Pastor-Satorras, R.; Vespignani, A., Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26, 521-529 (2002)
[71] Borgs, C.; Chayes, J.; Ganesh, A.; Saberi, A., How to distribute an antidote to control epidemics, Random Struct. Algorithms, 37, 2, 204-222 (2010) · Zbl 1247.05247
[72] Harris, T., Contact interactions on a lattice, Ann. Probab., 2, 6, 969-998 (1974) · Zbl 0334.60052
[73] Bramson, M.; Durrett, R.; Schonmann, R., The contact process in a random environment, Ann. Probab., 19, 3, 960-983 (1991) · Zbl 0741.60097
[74] Liggett, T., The survival of one-dimensional contact processes in random environments, Ann. Probab., 20, 2, 696-723 (1992) · Zbl 0754.60126
[75] Pemantle, R., The contact process on trees, Ann. Probab., 20, 3, 2089-2116 (1992) · Zbl 0762.60098
[76] Liggett, T., Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (1999), Springer-Verlag · Zbl 0949.60006
[77] Easley, D.; Kleinberg, J., Networks, Crowds, and Markets: Reasoning About a Highly Connected World (2010), Cambridge University Press · Zbl 1205.91007
[78] Pastor-Satorras, R.; Vespignani, A., Epidemics and immunization in scale-free networks, (Bornholdt, S.; Schuster, H., Handbook of Graphs and Networks: From the Genome to the Internet (2003), Wiley Press), 22
[79] Durrett, R., Some features of the spread of epidemics and information on a random graph, Proc. Natl. Acad. Sci., 107, 10, 4491-4498 (2010)
[80] Grassberger, P., On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci., 63, 2, 157-172 (1983) · Zbl 0531.92027
[81] Vazquez, A.; Moreno, Y., Resilience to damage of graphs with degree correlations, Phys. Rev. E, 67, 015101-1-015101-4 (2003)
[82] Watts, D.; Strogatz, S., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[83] Bollobás, B.; Chung, F., The diameter of a cycle plus a random matching, SIAM J. Discrete Math., 1, 3, 328-333 (1988) · Zbl 0664.05036
[84] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65, 035108-1-035108-4 (2002)
[85] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200-3203 (2001)
[86] Boguñá, M.; Pastor-Satorras, R.; Vespignani, A., Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. Lett., 90, 028701-1-028701-4 (2003)
[87] Van Mieghem, P.; Omic, J.; Kooij, R., Virus spread in networks, IEEE/ACM Trans. Netw., 17, 1, 1-14 (2009)
[88] Joo, J.; Lebowitz, J., Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys. Rev. E, 69, 066105-1-066105-6 (2004)
[89] Schwarzkopf, Y.; Rakos, A.; Mukamel, D., Epidemic spreading in evolving networks, Phys. Rev. E, 82, 036112-1-036112-8 (2010)
[90] Pastor-Satorras, R.; Vespignani, A., Immunization of complex networks, Phys. Rev. E, 65, 036104-1-036104-8 (2002)
[92] Scalia-Tomba, G., Asymptotic final-size distribution for some chain binomial processes, Adv. Appl. Probab., 17, 5, 477-495 (1985) · Zbl 0581.92023
[93] Ball, F.; Britton, T., An epidemic model with exposure-dependent severities, J. Appl. Probab., 42, 932-945 (2005) · Zbl 1090.92041
[94] Janson, S.; Luczak, T.; Turova, T.; Vallier, T., Bootstrap percolation on a random graph, Ann. Appl. Probab., 22, 5, 1989-2047 (2012) · Zbl 1254.05182
[96] Carreras, B.; Lynch, V.; Dobson, I.; Newman, D., Critical points and transitions in an electric power transmission model for cascading failure blackouts, Chaos, 12, 4, 985-994 (2002) · Zbl 1080.82579
[97] Newman, D.; Carreras, B.; Lynch, V.; Dobson, I., Exploring complex systems aspects of blackout risk and mitigation, IEEE Trans. Reliab., 60, 1, 134-143 (2011)
[98] Gleeson, J.; Cahalane, D., Seed size strongly affects cascades on random networks, Phys. Rev. E, 75, 056103-1-056103-4 (2007)
[99] Gleeson, J., Cascades on correlated and modular random networks, Phys. Rev. E, 77, 046117-1-046117-10 (2008)
[100] Hackett, A.; Melnik, S.; Gleeson, J., Cascades on a class of clustered random networks, Phys. Rev. E, 83, 056107-1-056107-10 (2011)
[101] Samuelsson, B.; Socolar, J., Exhaustive percolation on random networks, Phys. Rev. E, 74, 036113-1-036113-17 (2006)
[102] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality, Phys. Rev. A, 38, 1, 364-375 (1988) · Zbl 1230.37103
[103] Holme, P.; Kim, B., Vertex overload breakdown in evolving networks, Phys. Rev. E, 65, 066109-1-066109-8 (2002)
[104] Tadic, B.; Rodgers, G.; Thurner, S., Transport on complex networks: Flow, jamming and optimization, Int. J. Bifurcation Chaos, 17, 7, 2363-2385 (2007) · Zbl 1163.90375
[105] Ohira, T.; Sawatari, R., Phase transition in computer network traffic model, Phys. Rev. E, 58, 193-195 (1998)
[108] Karagiannis, T.; Molle, M.; Faloutsos, M., Long-range dependence: Ten years of internet traffic modeling, IEEE Internet Comput., 8, 5, 57-64 (2004)
[110] Veres, A.; Kenesi, Z.; Molnár, S.; Vattay, G., TCP’s role in the propagation of self-similarity in the internet, Comput. Commun., 26, 8, 899-913 (2003)
[111] Yuan, J.; Mills, K., Exploring collective dynamics in communication networks, J. Res. Natl. Inst. Stand. Technol., 107, 2, 179-191 (2002)
[112] Scheffer, M.; Bascompte, J.; Brock, W.; Brovkin, V.; Carpenter, S.; Dakos, V.; Held, H.; van Nes, E.; Rietkerk, M.; Sugihara, G., Early warning signals for critical transitions, Nature, 461, 53-59 (2009)
[113] Dakos, V.; Scheffer, M.; van Nes, E.; Brovkin, V.; Petoukhov, V.; Held, H., Slowing down as an early warning signal for abrupt climate change, Proc. Natl. Acad. Sci., 105, 38, 14308-14312 (2008)
[115] Fukuda, K.; Takayasu, M.; Takayasu, H., A cause of self-similarity in TCP traffic, Int. J. Commun. Syst., 18, 6, 603-617 (2005)
[116] Fukuda, K.; Takayasu, M.; Takayasu, H., Origin of critical behavior in Ethernet traffic, Physica A, 287, 1-2, 289-301 (2000)
[120] Leland, W.; Taqqu, M.; Willinger, W.; Wilson, D., On the self-similar nature of Ethernet traffic, IEEE/ACM Trans. Netw., 2, 1, 1-15 (1994)
[121] Taqqu, M.; Teverovsky, V.; Willinger, W., Is network traffic self-similar or multifractal?, Fractals, 5, 63-73 (1997) · Zbl 0908.60078
[122] Crovella, M.; Bestavros, A., Self-similarity in world wide web traffic—evidence and possible causes, IEEE/ACM Trans. Netw., 5, 835-846 (1997)
[123] Erramilli, A.; Roughan, M.; Veitch, D.; Willinger, W., Self-similar traffic and network dynamics, Proc. IEEE, 90, 5, 800-819 (2002)
[124] Yuan, J.; Mills, K., Simulating timescale dynamics of network traffic using homogeneous modeling, J. Res. Natl. Inst. Stand. Technol., 111, 3, 227-242 (2006)
[125] Abry, P.; Veitch, D., Wavelet analysis of long-range dependent traffic, IEEE Trans. Inform. Theory, 44, 1, 2-15 (1998) · Zbl 0905.94006
[126] Paxson, V.; Floyd, S., Wide-area traffic: The failure of Poisson modeling, IEEE/ACM Trans. Netw., 3, 3, 226-244 (1995)
[128] Yuan, J.; Mills, K., Monitoring the macroscopic effect of DDoS flooding attacks, IEEE Trans. Dependable Secure Comput., 2, 4, 324-335 (2005)
[129] Yuan, J.; Mills, K., A cross-correlation-based method for spatial temporal traffic analysis, Perform. Eval., 61, 2, 163-180 (2005)
[130] Sriram, K.; Montgomery, D.; Borchert, O.; Kim, O.; Kuhn, D., Study of BGP peering session attacks and their impacts on routing performance, IEEE J. Sel. Areas Commun., 24, 10, 1901-1915 (2006), Special issue on High-Speed Network Security
[132] Liu, Y.; Yuan, J.; Shan, X.; Ren, Y.; Ma, Z., Self-determined mechanisms in complex networks, Physica A, 387, 8-9, 2145-2154 (2008)
[133] Zhou, S.; Mondragón, R., The rich-club phenomenon in the Internet topology, IEEE Commun. Lett., 8, 3, 180-182 (2004)
[135] Zhou, S.; Zhang, G.; Zhang, G., Chinese Internet AS-level topology, IET Commun., 1, 2, 209-214 (2007)
[136] Mondragón, R., Topological modelling of large networks, Philos. Trans. Math. Phys. Eng. Sci., 366, 1872, 1931-1940 (2008) · Zbl 1153.90340
[137] Colizza, V.; Flammini, A.; Serrano, M.; Vespignani, A., Detecting rich-club ordering in complex networks, Nat. Phys., 2, 110-115 (2006)
[138] Gao, L., On inferring autonomous system relationships in the Internet, IEEE/ACM Trans. Netw., 9, 6, 733-745 (2001)
[140] Dimitropoulos, X.; Krioukov, D.; Vahdat, A.; Riley, G., Graph annotations in modeling complex network topologies, ACM Trans. Model. Comput. Simul., 19, 4, 17:1-17:29 (2009) · Zbl 1390.90134
[142] Dimitropoulos, X.; Krioukov, D.; Fomenkov, M.; Huffaker, B.; Hyun, Y.; Claffy, K.; Riley, G., AS relationships: Inference and validation, ACM SIGCOMM Comput. Commun. Rev., 37, 1, 29-40 (2007)
[144] Haddadi, H.; Rio, M.; Iannaccone, G.; Moore, A.; Mortier, R., Network topologies: Inference, modeling, and generation, IEEE Commun. Surv. Tutor., 10, 2, 48-69 (2008)
[145] Serrano, M.; Boguñá, M.; Díaz-Guilera, A., Modeling the Internet, Eur. Phys. J. B, 50, 1, 249-254 (2006)
[146] Oliveira, R.; Pei, D.; Willinger, W.; Zhang, B.; Zhang, L., The (in)completeness of the observed internet AS-level structure, IEEE/ACM Trans. Netw., 18, 1, 109-122 (2010)
[147] Clegg, R.; Di Cairano-Gilfedder, C.; Zhou, S., A critical look at power law modelling of the Internet, Comput. Commun., 33, 3, 259-268 (2010)
[148] Carlson, J.; Doyle, J., Complexity and robustness, Proc. Natl. Acad. Sci., 99, Supplement 1, 2539-2545 (2002)
[153] Tay, Y.; Tran, D.; Liu, E.; Ooi, W.; Morris, R., Equilibrium analysis through separation of user and network behavior, Comput. Netw., 52, 18, 3405-3420 (2008) · Zbl 1162.68360
[155] Mills, K.; Filliben, J.; Cho, D.; Schwartz, E.; Genin, D., (Study of Proposed Internet Congestion Control Mechanisms. Study of Proposed Internet Congestion Control Mechanisms, NIST Special Publication, vol. 500-282 (2010)), 534
[156] Vazquez, A.; Dobrin, R.; Sergi, D.; Eckmann, J.; Oltvai, Z.; Barabási, A., The topological relationship between the large-scale attributes and local interaction patterns of complex networks, Proc. Natl. Acad. Sci., 101, 52, 17940-17945 (2004)
[157] Derényi, I.; Palla, G.; Vicsek, T., Clique percolation in random networks, Phys. Rev. Lett., 94, 160202-1-160202-4 (2005)
[158] Palla, G.; Derényi, I.; Vicsek, T., The critical point of \(k\)-clique percolation in the Erdős-Rényi graph, J. Stat. Phys., 128, 1-2, 219-227 (2007) · Zbl 1118.82024
[159] Opsahl, T.; Colizza, V.; Panzarasa, P.; Ramasco, J., Prominence and control: The weighted rich-club effect, Phys. Rev. Lett., 101, 168702-1-168702-4 (2008)
[160] Soffer, S.; Vázquez, A., Network clustering coefficient without degree-correlation biases, Phys. Rev. E, 71, 057101-1-057101-4 (2005)
[161] Csabai, I., \(1 / f\) noise in computer network traffic, J. Phys. A: Math. Gen., 27, 12, L417-L421 (1994)
[162] Clegg, R., A practical guide to measuring the hurst parameter, Int. J. Simul. Syst. Sci. Technol., 7, 2, 3-14 (2006)
[163] Di Cairano-Gilfedder, C.; Clegg, R., A decade of Internet research: advances in models and practices, BT Technol. J., 23, 4, 115-128 (2005)
[164] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality: An explanation of \(1 / f\) noise, Phys. Rev. Lett., 59, 4, 381-384 (1987)
[165] Vespignani, A.; Zapperi, S., How self-organized criticality works: A unified mean-field picture, Phys. Rev. E, 57, 6345-6362 (1998)
[167] Halley, J.; Kunin, W., Extinction risk and the \(1 / f\) family of noise models, Theor. Popul. Biol., 56, 3, 215-230 (1999) · Zbl 0964.92042
[168] Allegrini, P.; Menicucci, D.; Bedini, R.; Fronzoni, L.; Gemignani, A.; Grigolini, P.; West, B.; ParadisiBo, P., Spontaneous brain activity as a source of ideal \(1 / f\) noise, Phys. Rev. E, 80, 061914-1-061914-13 (2009)
[169] Hooge, E., \(1 / f\) noise sources, IEEE Trans. Electron Devices, 41, 11, 1926-1935 (1994)
[170] Levitin, D.; Chordia, P.; Menon, V., Musical rhythm spectra from Bach to Joplin obey a \(1 / f\) power law, Proc. Natl. Acad. Sci., 109, 10, 3716-3720 (2012)
[171] Ward, L.; Greenwood, P., \(1 / f\) noise, Scholarpedia, 2, 12, 1537 (2007)
[173] Pilgram, B.; Kaplan, D., A comparison of estimators for \(1 / f\) noise, Physica D, 114, 1-2, 108-122 (1998) · Zbl 0983.37103
[174] Ninness, B., Estimation of \(1 / f\) noise, IEEE Trans. Inform. Theory, 44, 1, 32-46 (1998) · Zbl 0905.94009
[175] Takayasu, M., Characterization of violent fluctuations by interval distributions of level sets, Physica A, 197, 3, 371-378 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.