×

Computational and experimental approaches for investigating membranes diffusion behavior in model diesel fuel. (English) Zbl 1410.92184

Summary: Genetic algorithms trained support vector regression predicting model is conducted to research diffusion behavior of methylnaphthalene and dibenzothiophene in four different membranes of polymethyl methacrylate, polymethyl acrylate, polyvinyl chloride and polyvinyl alcohol in model diesel fuel. It is found that the polyvinyl chloride is optimal membrane material for improving the diffusion selectivity of methylnaphthalene and dibenzothiophene, which demonstrates that the polyvinyl chloride membrane is favorable to the diesel fuel desulfurization. Also, molecular dynamic simulation is applied to validating the performance of genetic algorithm trained support vector regression model. The results of genetic algorithm trained support vector regression model reveal that the simulation values are well agreed with the experimental data and molecular dynamic simulation results. Meanwhile, the performance of the genetic algorithms trained support vector regression predict model is better than that of the genetic algorithms trained neural network model, which indicates that genetic algorithms trained support vector regression method offers a new prospected decision-theoretic approach to the diesel desulfurization.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
68T05 Learning and adaptive systems in artificial intelligence

Software:

LIBSVM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C.S. Song, X.L. Ma, New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. 41, 207-238 (2003) · doi:10.1016/S0926-3373(02)00212-6
[2] V. Selvavathi, V. Chidambaram, A. Meenakshisundaram, B. Sairam, B. Sivasankar, Adsorptive desulfurization of diesel on activated carbon and nickel supported systems. Catal. Today 141, 99-102 (2009) · doi:10.1016/j.cattod.2008.05.009
[3] P. Gramatica, Principles of QSAR models validation: internal and external, QSAR. Combust. Sci. 26, 694-701 (2007)
[4] P.Y.M. Ponce, E.R. Martínez, G.M.C. Martín, F.P. Giménez, Y.E. Díaz, R.G. Domenech, E.R. Brogues, Bond-extended stochastic and nonstochastic bilinear indices QSPR/QSAR applications to the description of properties/activities of small-medium size organic compounds. Int. J. Quantum Chem. 111, 8-34 (2011) · doi:10.1002/qua.22392
[5] S.N. Butler, F.M. Plathe, A molecular dynamics study of viscosity in ionic liquids directed by quantitative structure-property relationships. J. Chem. Phys. 13, 1791-1801 (2012)
[6] I. Oprisiu, E. Varlamova, E. Muratov, A. Artemenko, G. Marcou, P. Polishchuk, V. Kuz’min, A. Varnek, QSPR approach to predict nonadditive properties of mixtures application to bubble point temperatures of binary mixtures of liquids. Mol. Inform. 31, 491-502 (2012) · doi:10.1002/minf.201200006
[7] S. Bajaj, S.S. Sambi, A.K. Madan, Topochemical model for prediction of anti-HIV activity of HEPT analogs. Bioorg. Med. Chem. Lett. 15, 467-469 (2005) · doi:10.1016/j.bmcl.2004.10.053
[8] A.D. Pillai, S. Rani, P.D. Rathod, F.P. Xavier, K.K. Vasu, H. Padh, V. Sudarsanam, QSAR studies on some thiophene analogs as anti-inflammatory agents: enhancement of activity by electronic parameters and its utilization for chemical lead optimization. Bioorg. Med. Chem. 13, 1275-1283 (2005) · doi:10.1016/j.bmc.2004.11.016
[9] J.T. Leonard, K. Roy, QSAR by LFER model of HIV protease inhibitor mannitol derivatives using FA-MLR, PCRA, and PLS techniques. Bioorg. Med. Chem. 14, 1039-1046 (2006) · doi:10.1016/j.bmc.2005.09.022
[10] F.A.D.L. Ribeiro, M.M.C. Ferreira, QSAR model of the phototoxicity of polycyclic aromatic hydrocarbons. J. Mol. Struct. Theochem. 719, 191-200 (2005) · doi:10.1016/j.theochem.2005.01.026
[11] J.L. González-Hernández, M. Mar Canedo, S. Encinar, Combining artificial neural networks and experimental design to prediction of kinetic rate constants. J. Math. Chem. 51, 1634-1653 (2013) · Zbl 1264.92057 · doi:10.1007/s10910-013-0170-7
[12] G. Li, X. Xing, W. Welsh, H. Rabitz, High dimensional model representation constructed by support vector regression. I. Independent variables with known probability distributions. J. Math. Chem. 55, 278-303 (2017) · Zbl 1360.62179 · doi:10.1007/s10910-016-0690-z
[13] H. Luo, J. Wang, K. Zou, QSAR study on cytotoxic activity (against KB cells) of some hederagenin diglycosides using support vector regression. J. Math. Chem. 49, 796-805 (2011) · doi:10.1007/s10910-010-9776-1
[14] Z. Yang, Q.N. Yu, W.P. Dong, X.S. Gu, W.M. Qiao, X.Y. Liang, Structure control classification and optimization model of hollow carbon nanosphere core polymer particle based on improved differential evolution support vector machine. Appl. Math. Model. 37, 7442-7451 (2013) · Zbl 06949454 · doi:10.1016/j.apm.2013.02.037
[15] Y. Pan, J. Jiang, R. Wang, H. Cao, Y. Cui, Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine. J. Hazard. Mater. 164, 1242-1249 (2009) · doi:10.1016/j.jhazmat.2008.09.031
[16] H. Golmohammadi, Z. Dashtbozorgi, W.E. Acree, A novel QSPR model for prediction of gas to dimethyl sulfoxide solvation enthalpy of organic compounds based on support vector machine. Mol. Inform. 31, 385-397 (2012) · doi:10.1002/minf.201200007
[17] H. Golmohammadi, Z. Dashtbozorgi, Prediction of bovine serum albumin-water partition coefficients of a wide variety of neutral organic compounds by means of support vector machine. Mol. Inform. 31, 867-878 (2012) · doi:10.1002/minf.201200091
[18] L. Davis, Handbook of genetic algorithms (Van Nostrand Reinhold, New York, 1991)
[19] F. Musharavati, A.S.M. Hamouda, Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines. Expert Syst. Appl. 38, 10770-10779 (2011) · doi:10.1016/j.eswa.2011.01.129
[20] Y.H. Chang, Y.C. Hou, Dynamic programming decision path encoding of genetic algorithms for production allocation problems. Comput. Ind. Eng. 54, 53-65 (2008) · doi:10.1016/j.cie.2007.06.034
[21] G. Milani, F. Milani, Genetic algorithm for the determination of binodal curves in ternary systems polymer-liquid(1)-liquid(2) and polymer(1)-polymer(2)-solvent. J. Comput. Chem. 28(13), 2203-2215 (2007) · doi:10.1002/jcc.20735
[22] G. Milani, F. Milani, Optimization of power cable production lines for EPM/EPDM elastomers by genetic algorithm with different peroxides. J. Appl. Polym. Sci. 111(1), 482-507 (2009) · doi:10.1002/app.29087
[23] G. Milani, F. Milani, EPDM accelerated sulfur vulcanization: a kinetic model based on a genetic algorithm. J. Math. Chem. 49(7), 1357-1383 (2011) · Zbl 1303.92155 · doi:10.1007/s10910-011-9832-5
[24] V. Vapnik, The nature of statistical learning theory (Springer, New York, 1995) · Zbl 0833.62008 · doi:10.1007/978-1-4757-2440-0
[25] A.J. Smola, B. Scholkopf, A tutorial on support vector regression (University of London, London, 1998)
[26] V. Cherkassky, P. Mullier, Learning from data, concepts, theory and methods (Wiley, Hoboken, 1998)
[27] LibSVM Support vector software library (2012). http://www.csie.ntu.edu.tw/ cjlin/libsvm
[28] K. Hotta, Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel. Image Vis. Comput. 26, 1490-1498 (2008) · doi:10.1016/j.imavis.2008.04.008
[29] S.S. Keerthi, C.J. Lin, Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15, 1667-1689 (2003) · Zbl 1086.68569 · doi:10.1162/089976603321891855
[30] L. Chambers, Practical handbook of genetic algorithms (Lewis Publishing, Stockport, 1995) · Zbl 0840.68007 · doi:10.1201/9781420050073
[31] J. Holland, Adaptation in natural and artificial systems (University of Michigan, Ann Arbor, 1975)
[32] A. Amirjanov, The dynamics of a changing range genetic algorithm. Int. J. Numer. Methods Eng. 81, 892-909 (2010) · Zbl 1183.65074
[33] D. Denison, C. Holmes, B. Malick, A. Smith, Bayesian methods for nonlinear classification and regression (Wiley, Chichester, 2002)
[34] M. Papadrakakis, N.D. Lagaros, Y. Fragakis, Parallel computational strategies for structural optimization. Int. J. Numer. Methods Eng. 58, 1347-1380 (2003) · Zbl 1032.74615 · doi:10.1002/nme.821
[35] C. Guardiani, L. Leggio, M.A. Scorciapino, V. de Pinto, M. Ceccarelli, A computational study of ion current modulation in hVDAC3 induced by disulfide bonds. Biochim. Biophys. Acta 1858, 813-823 (2016) · doi:10.1016/j.bbamem.2016.01.013
[36] M. Pasenkiewicz-Gierula, K. Baczynski, M. Markiewicz, K. Murzyn, Computer modelling studies of the bilayer/water interface. Biochim. Biophys. Acta 1858, 2305-2321 (2016) · doi:10.1016/j.bbamem.2016.01.024
[37] A. Farrotti, G. Bocchinfuso, A. Palleschi, N. Rosato, E.S. Salnikov, N. Voievoda, B. Bechinger, L. Stella, Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case. Biochim. Biophys. Acta 1848, 581-592 (2015) · doi:10.1016/j.bbamem.2014.11.002
[38] A. Sudibjo, D.E. Spearot, Molecular dynamics simulation of diffusion of small atmospheric penetrates in polydimethyl siloxane. Mol. Simul. 37, 115-122 (2011) · doi:10.1080/08927022.2010.524646
[39] Q. Yang, L.E. Achenie, Molecular dynamics simulation of penetrants transport in composite poly(4-methyl-2-pentyne) and silica nanoparticles. J. Phys. Chem. 116, 7409-7415 (2012)
[40] C.J. Ling, X.Y. Liang, F.C. Fan, Z. Yang, Diffusion behavior of the model diesel components in different polymer membranes by molecular dynamic simulation. Chem. Eng. Sci. 84, 292-302 (2012) · doi:10.1016/j.ces.2012.08.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.