×

Fast Jacket-Haar transform with any size. (English) Zbl 1395.94141

Summary: Jacket-Haar transform has been recently generalized from Haar transform and Jacket transform, but, unfortunately, it is not available in a case where the length \(N\) is not a power of 2. In this paper, we have proposed an arbitrary-length Jacket-Haar transform which can be conveniently constructed from the 2-point generalized Haar transforms with the fast algorithm, and thus it can be constructed with any sizes. Moreover, it can be further extended with elegant structures, which result in the fast algorithms for decomposing. We show that this approach can be practically applied for the electrocardiogram (ECG) signal processing. Simulation results show that it is more efficient than the conventional fast Fourier transform (FFT) in signal processing.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65T60 Numerical methods for wavelets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kyochi, S.; Tanaka, Y., General factorization of conjugate-symmetric hadamard transforms, IEEE Transactions on Signal Processing, 62, 13, 3379-3392, (2014) · Zbl 1394.94290 · doi:10.1109/tsp.2014.2326620
[2] Pang, Y. W.; Li, X. L.; Yuan, Y.; Tao, D.; Pan, J., Fast haar transform based feature extraction for face representation and recognition, IEEE Transactions on Information Forensics and Security, 4, 3, 441-450, (2009) · doi:10.1109/tifs.2009.2026455
[3] Tao, R.; Li, Y.-L.; Wang, Y., Short-time fractional fourier transform and its applications, IEEE Transactions on Signal Processing, 58, 5, 2568-2580, (2010) · Zbl 1392.94484 · doi:10.1109/tsp.2009.2028095
[4] Pei, S.-C.; Wen, C.-C.; Ding, J.-J., Conjugate symmetric discrete orthogonal transform, IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 4, 284-288, (2014) · doi:10.1109/TCSII.2014.2305011
[5] Lee, M. H., The center weighted Hadamard transform, IEEE Transactions on Circuits and Systems, 36, 9, 1247-1249, (1989) · doi:10.1109/31.34673
[6] Zeng, G.; Lee, M. H., A generalized reverse block jacket transform, IEEE Transactions on Circuits and Systems I, 55, 6, 1589-1600, (2008) · doi:10.1109/tcsi.2008.916620
[7] Lee, M. H.; Khan, M. H. A.; Kim, K. J.; Park, D., A fast hybrid Jacket-Hadamard matrix based diagonal block-wise transform, Signal Processing: Image Communication, 29, 1, 49-65, (2014) · doi:10.1016/j.image.2013.11.002
[8] Aung, A.; Ng, B. P.; Rahardja, S., A robust watermarking scheme using sequency-ordered complex hadamard transform, Journal of Signal Processing Systems, 64, 3, 319-333, (2011) · doi:10.1007/s11265-010-0492-7
[9] Song, W.; Lee, M. H.; Matalgah, M. M.; Guo, Y., Quasi-orthogonal space-time block codes designs based on jacket transform, Journal of Communications and Networks, 12, 3, 240-245, (2010) · doi:10.1109/JCN.2010.6388452
[10] Shi, R.; Guo, Y.; Lee, M. H., Quantum codes based on fast pauli block transforms in the finite field, Quantum Information Processing, 9, 5, 611-628, (2010) · Zbl 1200.81040 · doi:10.1007/s11128-010-0171-4
[11] Li, J.; Yan, Y.; Duan, W.; Song, S.; Lee, M. H., Tensor decomposition of Toeplitz Jacket matrices for big data processing, Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp ’15), IEEE · doi:10.1109/35021bigcomp.2015.7072840
[12] Aung, A.; Ng, B. P.; Rahardja, S., Sequency-ordered complex hadamard transform: properties, computational complexity and applications, IEEE Transactions on Signal Processing, 56, 8, 3562-3571, (2008) · Zbl 1390.94081 · doi:10.1109/tsp.2008.923195
[13] Wu, J.; Wang, L.; Yang, G.; Senhadji, L.; Luo, L.; Shu, H., Sliding conjugate symmetric sequency-ordered complex hadamard transform: fast algorithm and applications, IEEE Transactions on Circuits and Systems, 59, 6, 1321-1334, (2012) · doi:10.1109/tcsi.2011.2173386
[14] Pei, S.-C.; Wen, C.-C.; Ding, J.-J., Sequency-ordered generalized Walsh-Fourier transform, Signal Processing, 93, 4, 828-841, (2013) · doi:10.1016/j.sigpro.2012.10.004
[15] Mao, Y.; Peng, J.; Guo, Y.; Lee, M. H., On the fast fractional jacket transform, Circuits, Systems, and Signal Processing, 33, 5, 1491-1505, (2014) · doi:10.1007/s00034-013-9699-8
[16] Bouguezel, S.; Ahmad, M. O.; Swamy, M. N. S., A new class of reciprocal-orthogonal parametric transforms, IEEE Transactions on Circuits and Systems, 56, 4, 795-805, (2009) · doi:10.1109/tcsi.2008.2002923
[17] Bouguezel, S.; Ahmad, M. O.; Swamy, M. N. S., New parametric discrete fourier and hartley transforms, and algorithms for fast computation, IEEE Transactions on Circuits and Systems I: Regular Papers, 58, 3, 562-575, (2011) · doi:10.1109/TCSI.2010.2072151
[18] Lee, M. H.; Zhang, X.-D.; Jiang, X. Q., Fast parametric reciprocal-orthogonal jacket transforms, EURASIP Journal on Advances in Signal Processing, 2014, article 149, (2014) · doi:10.1186/1687-6180-2014-149
[19] Roy, R. C.; Gopikakumari, R., Relationship between the Haar transform and the MRT, Proceedings of the 8th International Conference on Information, Communications and Signal Processing (ICICS ’11), IEEE · doi:10.1109/icics.2011.6173127
[20] Ouyang, W.; Zhang, R.; Cham, W.-K., Fast pattern matching using orthogonal Haar transform, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’10), IEEE · doi:10.1109/CVPR.2010.5540058
[21] Ding, J.; Pei, S.; Wu, P., Jacket Haar transform, Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS ’11) · doi:10.1109/ISCAS.2011.5937864
[22] Ding, J.-J.; Pei, S.-C.; Wu, P.-H., Arbitrary-length walsh-jacket transforms, Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC ’11)
[23] Wang, L.; Guo, Y., Arbitrary point jacket haar transforms [EB/OL], China Science and Technology Paper, (2015), Beijing, China: Sciencepaper Online, Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.