×

Iterative algorithm for a system of equilibrium problems of Bregman strongly nonexpansive mapping. (English) Zbl 07447691

Summary: We prove a strong convergence theorem for fixed point of a Bregman strongly nonexpansive operator in real reflexive Banach spaces. This point is also a solution to a system of equilibrium problems. Finally, we provide examples to illustrate the main result.

MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
47J25 Iterative procedures involving nonlinear operators
PDFBibTeX XMLCite
Full Text: Link

References:

[1] A. Abkar, M. Shekarbaigi, A synthetic algorithm for families of demicontractive and nonexpansive mappings and equilibrium problems, Filomat 31 (19) (2017) 5891-5908. · Zbl 1485.47086
[2] A. Abkar, M. Shekarbaigi, N. Aghamohammadi, A new iterative algorithm for solving a system of generalized equilibrium problems, J. Nonlinear Funct. Anal. 2018 (2018) 46.
[3] A. Abkar, M. Shekarbaigi, A novel iterative algorithm applied to totally asymptotically nonexpansive mappings inCAT(0) spaces, Mathematics (2017) DOI: 10.3390/math5010014. · Zbl 1390.47014
[4] A. Abkar, M. Shekarbaigi, A. Azizi, Iterative algorithms for approximation of common fixed points of total asymptotically nonexpansive mappings in CAT(0) spaces, Journal of Mathematical Analysis 8 (5) (2017) 161-175.
[5] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145. · Zbl 0888.49007
[6] A. Moudafi, A partial complement method for approximating solutions of a primal dual fixed-point problem, Optim. Lett. 4 (3) (2010) 449-456. · Zbl 1200.90168
[7] P.M. Pardalos, T.M. Rassias, A.A. Khan, Nonlinear Analysis and Variational Problems, Springer, 2010. · Zbl 1178.49001
[8] H. Zegeye, E.U. Ofoedu, N. Shahzad, Convergence theorems for equilibrium problems, variational inequality problem and countably infinite relatively nonexpansive mappings, Appl. Math. Comp. 216 (2010) 3439-3449. · Zbl 1198.65100
[9] J.Y. Bello Cruz, A.N. Iusem, An explicit algorithm for monotone variational inequalities, Optimization, 61 (7) (2012) 855-871. · Zbl 1252.90088
[10] P. Kumam, A new hybrid iterative method for solution of equilibrium problems and fixed point problems for an inverse strongly monotone operator and a nonexpansive mapping, J. Appl. Math. Comput. 29 (2009) 263-280. · Zbl 1220.47102
[11] S. Plubtieng, R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. Math. Comput. 197 (2008) 548-558. · Zbl 1154.47053
[12] X. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009) 20-30. · Zbl 1165.65027
[13] X. Qin, Y. Su, Strong convergence theorems for relatively nonexpansive mappings in a Banach space, Nonlinear. Anal. 67 (2007) 1958-1965. · Zbl 1124.47046
[14] Y. Shehu, A new iterative scheme for a countable family of relatively nonexpansive mappings and an equilibrium problem in Banach spaces, J. Glob. Optim. 54 (2012) 519-535. · Zbl 1515.47103
[15] W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory and Appl. 2008 (2008) Article ID 528476. · Zbl 1187.47054
[16] W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009) 45-57. · Zbl 1170.47049
[17] R. Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Fixed Point Theory and Appl. 2018 (2008) Article ID 134148. · Zbl 1170.47051
[18] H. Zegeye, N. Shahzad, A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems, Nonlinear Anal. 70 (2010) 2707-2716. · Zbl 1223.47108
[19] L.M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR. Comput. Math. and Math. Phys. 7 (1967) 200-217. · Zbl 0186.23807
[20] H.H. Bauschke, J.M. Borwein, P.L. Combettes, Essential smoothness, essential strict convexity and Legendre functions in Banach spaces, Comm. Contemp. Math. 3 (2001) 615-647. · Zbl 1032.49025
[21] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-518. · Zbl 1122.47056
[22] W.Kumam,U.Witthayarat,P.Kumam,S.Suantai,K.Wattanawitoon, Convergence theorem for equilibrium problem and Bregman strongly nonexpansive mappings in Banach spaces, Optimization 62 (2) (2016) 265-280. · Zbl 1338.47101
[23] Y. Shehu, Iterative procedures for left Bregman strongly relatively nonexpansive mappings with application to equilibrium problems, International journal on fixed point theory computation and applications 17 (1) (2016) 173-188. · Zbl 1341.47086
[24] J.F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problem, Springer, New York, 2000. · Zbl 0966.49001
[25] H.H. Bauschke, J.M. Borwein, Legendre functions and the method of random Bregman projections, J. Convex. Anal. 4 (1997) 27-67. · Zbl 0894.49019
[26] Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981) 321-353. · Zbl 0431.49042
[27] J.M. Borwein, S. Reich, S. Sabach, A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept, J. Nonlinear Convex Anal. 12 (2011) 161-184. · Zbl 1221.26019
[28] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. (2006) Article ID 84919. · Zbl 1130.47046
[29] D. Butnariu, A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Dordrecht: Kluwer Academic Publishers, 2000. · Zbl 0960.90092
[30] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, Theory and Applications of nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York (1996), 313-318. · Zbl 0943.47040
[31] H.H. Bauschke, J.M. Borwein, P.L. Combettes, Bregman monotone optimization algorithms, SIAM. J. Control Optim. 42 (2003) 596-636. · Zbl 1049.90053
[32] V. Martin-Marquez, S. Reich, S. Sabach, Right Bregman nonexpansive operators in Banach spaces, Nonlinear Analysis 75 (2012) 5448-5465. · Zbl 1408.47011
[33] S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, In: H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz (editors), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York (2011), 301-316. · Zbl 1245.47015
[34] Y.I. Alber, Metric and generalized projection operator in Banach spaces: properties and applications, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Applied Mathematics, Dekker, New York 178 (1996), 15-50. · Zbl 0883.47083
[35] F. Kohsaka, W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005) 505-523. · Zbl 1105.47059
[36] R.P. Phelps, Convex Functions, Monotone Operators, and Differentiability, Springer Verlag, Berlin, 1993. · Zbl 0921.46039
[37] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010) 22-44. · Zbl 1200.47085
[38] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136. · Zbl 1109.90079
[39] S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Analysis 73 (1) (2010) 122-135. · Zbl 1226.47089
[40] S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Nonlinear Convex Anal. 10 (2009) 471-485. · Zbl 1180.47046
[41] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678. · Zbl 1043.90063
[42] P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008) 899912. · Zbl 1156.90426
[43] R.T. Rockafellar, Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc. 123 (1966) 46-63. · Zbl 0145.15802
[44] J.J. Moreau, Sur la fonction polaire dune fonction semi-continue superieurement, C. R. Acad. Sci. Paris 258 (1964) 1128-1130. · Zbl 0144.30501
[45] C. Zalinescu, Convex Analysis in General Vector Spaces, River. Edge. NJ: World Scientific, 2002. · Zbl 1023.46003
[46] V. Martin-Marquez, S. Reich, S. Sabach, Iterative methods for approximating fixed points of Bregman nonexpansive operators, Discrete and Continuous Dynamical Systems 6 (2013) 1043-1063. · Zbl 1266.26023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.