×

zbMATH — the first resource for mathematics

Fuzzy observer design using linear matrix inequalities for fuzzy closed-loop control systems. (English) Zbl 1079.93030
The study is focused on the design of fuzzy observers for fuzzy Takagi-Sugeno models and fuzzy controllers. The fuzzy observer under discussion is governed by a collection of “if-then” ruies assuming the following form \[ \text{if }y_1(t)\text{ is }A_{i1}\text{ and }y_p(t)\text{ is }A_{ip}\text{ then }d\widehat{\mathbf x}/dt = A_i,\widehat{\mathbf x} + B_i{\mathbf u}+ L_i ({\mathbf y} - \widehat{\mathbf y}) \] where “\(p\)” denotes the number of measured outputs, \({\mathbf y} =C_i{\mathbf x}\) is the output of the \(i\)-th rule of the system, \(\widehat{\mathbf y}\) denotes a global output estimate while \(L_i\) is the \(i\)-th local observer gain matrix. \(A_{i1}, A_{i2},\dots,A_{ip}\) are the corresponding fuzzy sets defined in the output space.
The design of the fuzzy observer exploits the linear matrix inequalities (LMI) formulation of the stability conditions for closed-loop fuzzy models. A separation property for the observer and controller is formulated. Both continuous-time and discrete-time fuzzy observers are introduced and discussed. A numerical example presented in the study is concerned with a model of an inverted pendulum.
MSC:
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ackermann, J. 1993. ”Robust control: systems with uncertain physical parameters”. New York: Springer-Verlag. · Zbl 0853.93002
[2] DOI: 10.1109/9780470544457 · doi:10.1109/9780470544457
[3] Filev D., IEEE ISIC pp 253– (1996)
[4] DOI: 10.1016/S0016-0032(99)00017-4 · Zbl 0980.93042 · doi:10.1016/S0016-0032(99)00017-4
[5] Kukolj, D. and Kuzmanovic, S. 2001. ”Design of a near-optimal, wide range fuzzy logic controller”. · Zbl 0974.93545
[6] DOI: 10.1109/TFUZZ.2003.812699 · doi:10.1109/TFUZZ.2003.812699
[7] Lee, K.R. and Jeung, E.T. 2001. ”Robust fuzzy control for uncertain nonlinear systems via state feedback: an LMI approach”. Elsevier Science. · Zbl 0974.93546
[8] Lian, R.J. and Haung, S.J. 2001. ”A mixed fuzzy controller for MIMO systems”. Elsevier Science.
[9] Lunze J., Feedback Control of Large Scale Systems (1991) · Zbl 0755.93004
[10] DOI: 10.1109/TFUZZ.2003.817840 · doi:10.1109/TFUZZ.2003.817840
[11] Naumov B., Nonlinear Control Systems (1990) · Zbl 0757.93035
[12] Passino, K. and Yurkovich, S. 1998. ”Fuzzy Control”. Addison-Wesley. · Zbl 0925.93530
[13] Pedrycz W., Fuzzy Control and Systems (1993) · Zbl 0839.93006
[14] Ross T., Fuzzy Logic with Engineering Applications (1995) · Zbl 0855.93003
[15] Simani S., IEEE Int. Conf. Fuzzy Syst. (1998)
[16] Tahani V., IEEE Int. Conf. Fuzzy Syst. (1998)
[17] Tsang, K.M. 2001. ”Auto-tuning of fuzzy logic controllers for self-regulating process”. Elsevier Science. · Zbl 0974.93543
[18] Wang, L.X. 1994. ”Adaptive fuzzy systems and control design and stability analysis”. New Jersey: Prentice Hall.
[19] Wong L.K., IEEE Int. Conf. Fuzzy Syst. (1998)
[20] Yen J., Fuzzy Logic Intelligence, Control, and Information (1998)
[21] Zhang, J.M. and Li, R.H. 2001. ”Stability and systematic design of fuzzy control systems”. Elsevier Science. · Zbl 0988.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.