×

zbMATH — the first resource for mathematics

Customer segmentation and classification from blogs by using data mining: an example of VoIP phone. (English) Zbl 1303.91140
Summary: Blogs have been considered the 4th Internet application that can cause radical changes in the world, after e-mail, instant messaging, and Bulletin Board System (BBS). Many Internet users rely heavily on them to express their emotions and personal comments on whatever topics interest them. Nowadays, blogs have become the popular media and could be viewed as new marketing channels. Depending on the blog search engine, Technorati, we tracked about 94 million blogs in August 2007. It also reported that a whole new blog is created every 7.4 seconds and 275,000 blogs are updated daily. These figures can be used to illustrate the reason why more and more companies attempt to discover useful knowledge from this vast number of blogs for business purposes. Therefore, blog mining could be a new trend of web mining. The major objective of this study is to present a structure that includes unsupervised (self-organizing map) and supervised learning methods (back-propagation neural networks, decision tree, and support vector machines) for extracting knowledge from blogs, namely, a blog mining (BM) model. Moreover, a real case regarding VoIP (Voice over Internet Protocol) phone products is provided to demonstrate the effectiveness of the proposed method.
MSC:
91D30 Social networks; opinion dynamics
92B20 Neural networks for/in biological studies, artificial life and related topics
Software:
C4.5; LIBSVM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/01969720600734586 · Zbl 1167.68419 · doi:10.1080/01969720600734586
[2] DOI: 10.1145/846183.846187 · Zbl 05442762 · doi:10.1145/846183.846187
[3] DOI: 10.1016/j.ijhcs.2006.08.009 · Zbl 05136401 · doi:10.1016/j.ijhcs.2006.08.009
[4] DOI: 10.1002/aris.1440380107 · Zbl 02360187 · doi:10.1002/aris.1440380107
[5] DOI: 10.1016/S0957-4174(02)00052-0 · Zbl 01937327 · doi:10.1016/S0957-4174(02)00052-0
[6] DOI: 10.1016/j.comnet.2005.05.027 · Zbl 1095.68509 · doi:10.1016/j.comnet.2005.05.027
[7] Cristianini N., An introduction to support vector machines and other kernel-based learning methods (2000) · Zbl 0994.68074
[8] DOI: 10.1016/j.ijhcs.2006.04.002 · Zbl 05136367 · doi:10.1016/j.ijhcs.2006.04.002
[9] Epstein M., CMA Management pp 28– (2009)
[10] Freeman A. J., Neural networks: Algorithms, applications, and programming techniques (1992)
[11] DOI: 10.1080/01969720600998546 · Zbl 1107.68441 · doi:10.1080/01969720600998546
[12] Hof R., Business Week Online – The Tech Beat (2005)
[13] Hsu , C.W. , Chang , C.C. , and Lin , C.J. 2009 . A practical guide to support vector classification. Available athttp://www.csie.ntu.edu.tw/ cjlin/libsvm/index.html (accessed May 19, 2009) .
[14] DOI: 10.1109/5.58325 · doi:10.1109/5.58325
[15] DOI: 10.1145/360402.360406 · Zbl 05442805 · doi:10.1145/360402.360406
[16] DOI: 10.1080/01969720600887152 · Zbl 1142.68474 · doi:10.1080/01969720600887152
[17] DOI: 10.1016/S1389-1286(99)00040-7 · doi:10.1016/S1389-1286(99)00040-7
[18] Lappas , G. 2007 . An overview of web mining in social benefit areas.The 9th IEEE International Conference on E-Commerce Technology and 4th IEEE International Conference on Enterprise Computing, E-Commerce and E-Service, July 23–26, 683–690 .
[19] DOI: 10.1016/S1473-3099(05)70292-9 · doi:10.1016/S1473-3099(05)70292-9
[20] DOI: 10.1016/j.jbusres.2005.11.005 · doi:10.1016/j.jbusres.2005.11.005
[21] DOI: 10.1080/01969720601139058 · Zbl 1178.68438 · doi:10.1080/01969720601139058
[22] DOI: 10.1016/j.jada.2007.02.027 · doi:10.1016/j.jada.2007.02.027
[23] DOI: 10.1145/1035134.1035163 · Zbl 05394030 · doi:10.1145/1035134.1035163
[24] DOI: 10.1016/j.ejor.2006.09.023 · Zbl 1137.90776 · doi:10.1016/j.ejor.2006.09.023
[25] DOI: 10.1016/S1470-2045(05)70419-8 · doi:10.1016/S1470-2045(05)70419-8
[26] Philip D. W., Neural computing: Theory and practice (1992)
[27] DOI: 10.1016/j.pubrev.2006.11.018 · doi:10.1016/j.pubrev.2006.11.018
[28] Qin , J. , Zhou , Y. , Reid , E. , Lai , G. , and Chen , H. 2006 . Unraveling internet terrorist groups’ exploitation of the web: technical sophistication, media richness, and web interactivity.Proceedings of the Workshop on Intelligence and Security Informatics (WISI 06), Singapore .
[29] Quinlan J. R., Machine Learning 1 pp 81– (1986)
[30] Quinlan J. R., C4.5: Programs for machine learning (1993)
[31] DOI: 10.1016/j.patcog.2006.10.010 · Zbl 1112.68113 · doi:10.1016/j.patcog.2006.10.010
[32] Rosenbloom A., Communications of the ACM 47 pp 31– (2004) · Zbl 05394175 · doi:10.1145/1035134.1035161
[33] Rumelhart D. E., Parallel distributed processing 1 (1986)
[34] DOI: 10.1016/j.neucom.2006.04.011 · Zbl 05716255 · doi:10.1016/j.neucom.2006.04.011
[35] Seiffert , U. and Jain , L. 2002 .Self-Organizing Neural Networks: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, 78 . Berlin : Springer . · Zbl 0974.00027
[36] DOI: 10.1080/0020754031000090612 · doi:10.1080/0020754031000090612
[37] DOI: 10.1016/j.apsusc.2005.03.235 · doi:10.1016/j.apsusc.2005.03.235
[38] DOI: 10.1016/j.pubrev.2006.09.008 · doi:10.1016/j.pubrev.2006.09.008
[39] Vapnik V., Advances in Neural Information Processing Systems (1996)
[40] DOI: 10.1109/ICCIMA.2003.1238105 · doi:10.1109/ICCIMA.2003.1238105
[41] DOI: 10.1016/j.eswa.2006.05.017 · doi:10.1016/j.eswa.2006.05.017
[42] DOI: 10.1109/TKDE.2005.95 · Zbl 05109801 · doi:10.1109/TKDE.2005.95
[43] DOI: 10.1007/s10115-007-0114-2 · Zbl 05348912 · doi:10.1007/s10115-007-0114-2
[44] DOI: 10.1109/MIS.2005.96 · Zbl 05095461 · doi:10.1109/MIS.2005.96
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.