×

Discontinuous Galerkin methods for plasma physics in the scrape-off layer of tokamaks. (English) Zbl 1351.82104

Summary: A new parallel discontinuous Galerkin solver, called ArcOn, is developed to describe the intermittent turbulent transport of filamentary blobs in the scrape-off layer (SOL) of fusion plasma. The model is comprised of an elliptic subsystem coupled to two convection-dominated reaction-diffusion-convection equations. Upwinding is used for a class of numerical fluxes developed to accommodate cross product driven convection, and the elliptic solver uses SIPG, NIPG, IIPG, Brezzi, and Bassi-Rebay fluxes to formulate the stiffness matrix. A novel entropy sensor is developed for this system, designed for a space-time varying artificial diffusion/viscosity regularization algorithm. Some numerical experiments are performed to show convergence order on manufactured solutions, regularization of blob/streamer dynamics in the SOL given unstable parameterizations, long-time stability of modon (or dipole drift vortex) solutions arising in simulations of drift-wave turbulence, and finally the formation of edge mode turbulence in the scrape-off layer under turbulent saturation conditions.

MSC:

82D10 Statistical mechanics of plasmas
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)

Software:

deal.ii; PETSc; BOUT++; p4est
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altmann, C.; Beck, A.; Birkefeld, A.; Hindenlang, F.; Staudenmaier, M.; Gassner, G.; Munz, C.-D., Discontinuous Galerkin for high performance computational fluid dynamics (hpcdg), (Nagel, W. E.; Kröner, D. B.; Resch, M. M., High Performance Computing in Science and Engineering ’11 (2012), Springer: Springer Berlin, Heidelberg), 277-288
[2] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, D., Discontinuous Galerkin methods for elliptic problems, (Discontinuous Galerkin Methods. Discontinuous Galerkin Methods, Newport, RI, 1999. Discontinuous Galerkin Methods. Discontinuous Galerkin Methods, Newport, RI, 1999, Lect. Notes Comput. Sci. Eng., vol. 11 (2000), Springer: Springer Berlin), 89-101 · Zbl 0948.65127
[3] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760 (1982) · Zbl 0482.65060
[4] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2001/02) · Zbl 1008.65080
[5] Aydemir, A., Convective transport in the scrape-off layer of tokamaks, Phys. Plasmas, 12, 6 (Jun. 2005)
[6] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., PETSc users manual (2013), Argonne National Laboratory, Technical Report ANL-95/11 - Revision 3.4
[7] Bangerth, W.; Heister, T.; Kanschat, G., deal.II differential equations analysis library, technical reference
[8] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[9] Baumann, C.; Oden, J., A discontinuous hp finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 175, 3-4, 311-341 (Jul. 2, 1999)
[10] Borggaard, J.; Iliescu, T.; Roop, J. P., A bounded artificial viscosity large eddy simulation model, SIAM J. Numer. Anal., 47, 1, 622-645 (2009) · Zbl 1391.76202
[11] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous finite elements for diffusion problems, (Atti Convegno in onore di F. Brioschi. Atti Convegno in onore di F. Brioschi, Milan, 1997 (1999), Istituto Lombardo, Accademia di Scienze e Lettere: Istituto Lombardo, Accademia di Scienze e Lettere Milan, Italy), 197-217
[12] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[13] Cheng, Y.; Gamba, I. M.; Morrison, P. J., Study of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems, J. Sci. Comput., 56, 2, 319-349 (Aug. 2013)
[14] Cheng, Y.; Li, F.; Qiu, J.; Xu, L., Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys., 238, 255-280 (Apr. 1, 2013)
[15] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys., 84, 1, 90-113 (1989) · Zbl 0677.65093
[16] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059
[17] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[18] Dawson, C.; Sun, S.; Wheeler, M. F., Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Eng., 193, 23-26, 2565-2580 (2004) · Zbl 1067.76565
[19] Dawson, C.; Trahan, C. J.; Kubatko, E. J.; Westerink, J. J., A parallel local timestepping Runge-Kutta discontinuous Galerkin method with applications to coastal ocean modeling, Comput. Methods Appl. Mech. Eng., 259, 154-165 (Jun. 1, 2013)
[20] Dawson, C.; Wheeler, M.; Proft, J., Adaptive stencil and discontinuous Galerkin methods for transport equations on triangular grids (1999), Technical Report
[21] Dedner, A.; Ohlberger, M., A new hp-adaptive DG scheme for conservation laws based on error control, (Hyperbolic Problems: Theory, Numerics, Applications (2008), Springer: Springer Berlin), 187-198 · Zbl 1138.65089
[22] D’Ippolito, D. A.; Myra, J. R.; Zweben, S. J., Convective transport by intermittent blob-filaments: comparison of theory and experiment, Phys. Plasmas, 18, 6, 060501 (2011)
[23] Dudson, B. D.; Umansky, M. V.; Xu, X. Q.; Snyder, P. B.; Wilson, H. R., BOUT++: a framework for parallel plasma fluid simulations, Comput. Phys. Commun., 180, 9, 1467-1480 (Sep. 2009)
[24] Dudson, B. D.; Umansky, M. V.; Xu, X. Q.; Snyder, P. B.; Wilson, H. R., BOUT++: a framework for parallel plasma fluid simulations, Comput. Phys. Commun., 180, 9, 1467-1480 (Sep. 2009)
[25] Feistauer, M.; Kučera, V., On a robust discontinuous Galerkin technique for the solution of compressible flow, J. Comput. Phys., 224, 1, 208-221 (2007) · Zbl 1114.76042
[26] Garcia, O. E.; Bian, N. H.; Fundamenski, W., Radial interchange motions of plasma filaments, Phys. Plasmas, 13, 8 (Aug. 2006)
[27] Ghil, M.; Kimoto, M.; Neelin, J., Nonlinear dynamics and predictability in the atmospheric sciences, Rev. Geophys., 29, 1, S, 46-55 (1991)
[28] Heath, R. E.; Gamba, I. M.; Morrison, P. J.; Michler, C., A discontinuous Galerkin method for the Vlasov-Poisson system, J. Comput. Phys., 231, 4, 1140-1174 (Feb. 20, 2012)
[29] Hesthaven, J.; Lynov, J.; Nycander, J., Dynamics of nonstationary dipole vortices, Phys. Fluids A, Fluid Dyn., 5, 3, 622-629 (Mar. 1993)
[30] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods, (Algorithms, Analysis, and Applications. Algorithms, Analysis, and Applications, Texts in Applied Mathematics, vol. 54 (2008), Springer: Springer New York) · Zbl 1078.78014
[31] Jacobs, G.; Hesthaven, J., High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. Comput. Phys., 214, 1, 96-121 (May 1, 2006)
[32] Jacobs, G. B.; Hesthaven, J. S., Implicit-explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning, Comput. Phys. Commun., 180, 10, 1760-1767 (Oct. 2009)
[33] Jovanovic, D.; Shukla, P. K., Structures and zonal flows in magnetized plasmas, (Eliasson, B.; Shukla, P. K., New Frontiers in Advanced Plasma Physics, ICTP International Advanced Workshop on the Frontiers of Plasma Physics. New Frontiers in Advanced Plasma Physics, ICTP International Advanced Workshop on the Frontiers of Plasma Physics, Trieste, Italy, Jul. 05-16, 2010. New Frontiers in Advanced Plasma Physics, ICTP International Advanced Workshop on the Frontiers of Plasma Physics. New Frontiers in Advanced Plasma Physics, ICTP International Advanced Workshop on the Frontiers of Plasma Physics, Trieste, Italy, Jul. 05-16, 2010, AIP Conference Proceedings, vol. 1306 (2010), Abdus Salam Int Ctr Theoret Phys), 150-159
[34] Kloeckner, A.; Warburton, T.; Bridge, J.; Hesthaven, J. S., Nodal discontinuous Galerkin methods on graphics processors, J. Comput. Phys., 228, 21, 7863-7882 (Nov. 2009)
[35] Krasheninnikov, S. I.; D’Ippolito, D. A.; Myra, J. R., Recent theoretical progress in understanding coherent structures in edge and SOL turbulence, J. Plasma Phys., 74, 5, 679-717 (Oct. 2008)
[36] Kubatko, E.; Dawson, C.; Westerink, J., Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids, J. Comput. Phys., 227, 23, 9697-9710 (2008) · Zbl 1154.65071
[37] Kubatko, E. J.; Westerink, J. J.; Dawson, C., hp discontinuous Galerkin methods for advection dominated problems in shallow water flow, Comput. Methods Appl. Mech. Eng., 196, 1-3, 437-451 (2006) · Zbl 1120.76348
[38] Kubatko, E. J.; Westerink, J. J.; Dawson, C., Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations, J. Comput. Phys., 222, 2, 832-848 (Mar. 2007)
[39] Kuzmin, D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 233, 12, 3077-3085 (2010) · Zbl 1252.76045
[40] Kuzmin, D.; Shashkov, M. J.; Svyatskiy, D., A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, J. Comput. Phys., 228, 9, 3448-3463 (May 20, 2009)
[41] Kuzmin, D.; Turek, S., High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter, J. Comput. Phys., 198, 1, 131-158 (Jul. 20, 2004)
[42] Larichev, V. D.; Reznik, G. M., Two-dimensional solitary rossby waves, Dokl. Akad. Nauk SSSR, 231, 1077 (1976)
[43] Lie, I., Well-posed transparent boundary conditions for the shallow water equations, Appl. Numer. Math., 38, 4, 445-474 (2001) · Zbl 1011.76059
[44] Loarte, A.; Lipschultz, B.; Kukushkin, A.; Matthews, G.; Stangeby, P.; Asakura, N.; Counsell, G.; Federici, G.; Kallenbach, A.; Krieger, K.; Mahdavi, A.; Philipps, V.; Reiter, D.; Roth, J.; Strachan, J.; Whyte, D.; Doerner, R.; Eich, T.; Fundamenski, W.; Herrmann, A.; Fenstermacher, M.; Ghendrih, P.; Groth, M.; Kirschner, A.; Konoshima, S.; LaBombard, B.; Lang, P.; Leonard, A.; Monier-Garbet, P.; Neu, R.; Pacher, H.; Pegourie, B.; Pitts, R.; Takamura, S.; Terry, J.; Tsitrone, E., The ITPA Scrape-off Layer, and D. P. T. Group. Chapter 4: Power and particle control, Nucl. Fusion, 47, 6, S203-S263 (2007)
[45] Loverich, J.; Hakim, A.; Shumlak, U., A discontinuous Galerkin method for ideal two-fluid plasma equations, Commun. Comput. Phys., 9, 2, 240-268 (Feb. 2011)
[46] Loverich, J.; Shumlak, U., A discontinuous Galerkin method for the full two-fluid plasma model, Europhysics Conference on Computational Physics. Europhysics Conference on Computational Physics, Genoa, Italy, Sep. 01-04, 2004. Europhysics Conference on Computational Physics. Europhysics Conference on Computational Physics, Genoa, Italy, Sep. 01-04, 2004, Comput. Phys. Commun., 169, 1-3, 251-255 (Jul. 1 2005)
[47] Mani, A.; Larsson, J.; Moin, P., Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks, J. Comput. Phys., 228, 19, 7368-7374 (Oct. 20, 2009)
[48] Meier, E. T.; Glasser, A. H.; Lukin, V. S.; Shumlak, U., Modeling open boundaries in dissipative MHD simulation, J. Comput. Phys., 231, 7, 2963-2976 (Apr. 1, 2012)
[49] Meiss, J.; Horton, W., Solitary vortices in the presence of magnetic shear, Phys. Plasmas, 26, 4, 990-997 (April 1983)
[50] Meyerson, D.; Michoski, C.; Horton, W.; Waelbroeck, F., Radial interchange driven turbulence and transport across chaotic magnetic field lines, Phys. Plasmas (2014), in press
[52] Michoski, C.; Evans, J.; Schmitz, P., Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors I: quiescent reactors (2014), preprint · Zbl 1425.65117
[53] Michoski, C.; Evans, J. A.; Schmitz, P. G.; Vasseur, A., Quantum hydrodynamics with trajectories: the nonlinear conservation form mixed/discontinuous Galerkin method with applications in chemistry, J. Comput. Phys., 228, 23, 8589-8608 (2009) · Zbl 1287.76244
[54] Michoski, C.; Evans, J. A.; Schmitz, P. G.; Vasseur, A., A discontinuous Galerkin method for viscous compressible multifluids, J. Comput. Phys., 229, 6, 2249-2266 (2010) · Zbl 1303.76088
[55] Michoski, C.; Mirabito, C.; Dawson, C.; Kubatko, E.; Wirasaet, D.; Westerlink, J., Adaptive hierarchic transformations over dynamic \(p\)-enriched schemes applied to generalized DG systems, J. Comput. Phys., 230, 22, 8028-8056 (2011) · Zbl 1269.65099
[56] Morrison, P., A paradigm for joined hamiltonian and dissipative systems, Physica D, 18, 1-3, 410-419 (Jan. 1986)
[57] Neven, E., Linear stability of modons on a sphere, J. Atmos. Sci., 58, 16, 2280-2305 (2001)
[58] Oden, J. T.; Babuška, I.; Baumann, C. E., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 2, 491-519 (1998) · Zbl 0926.65109
[59] Peterson, J. L.; Hammett, G. W., Positivity preservation and advection algorithms with applications to edge plasma turbulence, SIAM J. Sci. Comput., 35, 3, B576-B605 (2013) · Zbl 1273.76450
[60] Rivière, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations, (Theory and Implementation. Theory and Implementation, Frontiers in Applied Mathematics, vol. 35 (2008), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA) · Zbl 1153.65112
[61] Rossmanith, J. A.; Seal, D. C., A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys., 230, 16, 6203-6232 (Jul. 10, 2011)
[62] Russell, D. A.; Myra, J. R.; D’Ippolito, D. A., Saturation mechanisms for edge turbulence, Phys. Plasmas, 16, 12, 122304 (2009)
[63] Ruuth, S., Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput., 75, 253, 183-207 (2006), (electronic) · Zbl 1080.65088
[64] Saha, S. K.; Chowdhury, S., Intermittent transport in the scrape-off layer of the SINP tokamak, Phys. Plasmas, 13, 9 (Sep. 2006)
[65] Sakuma, H.; Ghil, M., Stability of propagating modons for small-amplitude perturbations, Phys. Fluids A, Fluid Dyn., 3, 3, 408-414 (Mar. 1991)
[66] Shu, C.-W.; Osher, S., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[67] Shumlak, U.; Lilly, R.; Reddell, N.; Sousa, E.; Srinivasan, B., Advanced physics calculations using a multi-fluid plasma model, Comput. Phys. Commun., 182, 9, SI, 1767-1770 (Sep. 2011)
[68] Srinivasan, B.; Hakim, A.; Shumlak, U., Numerical methods for two-fluid dispersive fast MHD phenomena, Commun. Comput. Phys., 10, 1, 183-215 (Jul. 2011)
[69] Toulorge, T.; Desmet, W., {CFL} conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids, J. Comput. Phys., 230, 12, 4657-4678 (2011) · Zbl 1220.65139
[70] Waelbroeck, F.; Morrison, P.; Horton, W., Hamiltonian formulation and coherent structures in electrostatic turbulence, Plasma Phys. Control. Fusion, 46, 9, 1331 (2004)
[71] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845 (Jul. 20, 2013)
[72] Warburton, T.; Karniadakis, G., A discontinuous Galerkin method for the viscous MHD equations, J. Comput. Phys., 152, 2, 608-641 (Jul. 1, 1999)
[73] Wilcox, L.; Stadler, G.; Burstedde, C.; Ghattas, O., A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media, J. Comput. Phys., 229, 24, 9373-9396 (Dec. 10, 2010)
[74] Wirasaet, D.; Brus, S.; Michoski, C.; Kubatko, E.; Westerink, J.; Dawson, C., Artificial boundary layers in the discontinuous Galerkin shallow water solution in channels (2013), preprint · Zbl 1351.76085
[75] Wirasaet, D.; Tanaka, S.; Kubatko, E. J.; Westerink, J. J.; Dawson, C., A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals, 15th International Conference on Finite Elements in Flow Problems. 15th International Conference on Finite Elements in Flow Problems, Tokyo, Japan, Apr. 01-03, 2009. 15th International Conference on Finite Elements in Flow Problems. 15th International Conference on Finite Elements in Flow Problems, Tokyo, Japan, Apr. 01-03, 2009, Int. J. Numer. Methods Fluids, 64, 10-12, 1336-1362 (Dec. 30, 2010)
[76] Zingan, V.; Guermond, J.-L.; Morel, J.; Popov, B., Implementation of the entropy viscosity method with the discontinuous Galerkin method, Comput. Methods Appl. Mech. Eng., 253, 479-490 (Jan. 1, 2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.