zbMATH — the first resource for mathematics

Zeeman’s conjecture for unthickened special polyhedra is equivalent to the Andrews-Curtis conjecture. (English. Russian original) Zbl 0654.57004
Sib. Math. J. 28, No. 6, 917-928 (1987); translation from Sib. Mat. Zh. 28, No. 6(166), 66-80 (1987).
See the review in Zbl 0638.57002.

57M20 Two-dimensional complexes (manifolds) (MSC2010)
Full Text: DOI
[1] S. V. Matveev, ?Special skeletons of piecewise-linear manifolds,? Mat. Sb.,92, No. 2, 282-293 (1973). · Zbl 0286.57011
[2] B. G. Casler, ?An embedding theorem for connected 3-manifolds with boundary,? Proc. Am. Math. Soc.,16, 559-566 (1965). · Zbl 0129.15801
[3] D. Gillman and D. Rolfsen, ?The Zeeman conjecture for standard spines is equivalent to the Poincare conjecture,? Topology,22, No. 3, 315-323 (1983). · Zbl 0518.57007
[4] S. V. Matveev, ?Transformations of special spines,? Deposited at VINITI, July 8, 1985, No. 4907-85.
[5] J. J. Andrews and M. L. Curtis, ?Free groups and handlebodies,? Proc. Am. Math. Soc.,16, No. 2, 192-195 (1965). · Zbl 0131.38301
[6] R. Kreher and W. Metzler, ?Simpliziale Transformationen von Polyedern und die Zeeman-Vermutung,? Topology,22, No. 1, 19-26 (1983). · Zbl 0521.57014
[7] I. A. Volodin, V. E. Kuznetsov, and A. T. Fomenko, ?On the problem of discriminating algorithmically the standard three-dimensional sphere,? Usp. Mat. Nauk,29, No. 5, 71-168 (1974). · Zbl 0311.57001
[8] J. W. Milnor, ?Whitehead torsion,? Bull. Am. Math. Soc.,72, 358-426 (1966). · Zbl 0147.23104
[9] H. Zieschang, ?Uber einfache Kurven auf Vollbrezeln,? Abh. Math. Sem. Univ. Hamburg,2, No. 3-4, 231-250 (1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.