zbMATH — the first resource for mathematics

On the 3/1 planar and circular resonant problem. (English) Zbl 0635.70010
Among several asteroids near to 3/1 resonance with Jupiter, several are librating with respect to the critical angle (3\(\lambda\) ’-\(\lambda\)- 2\({\tilde \omega}\)) where \({\tilde \omega}\) is the longitude of the perihelion of the asteroid and \(\lambda\), \(\lambda\) ’ are the mean longitudes of the asteroid and Jupiter, respectively. Hori’s perturbation method [. G. Hori, Publ. Astron. Soc. Japan, 18, 287 ff. (1966)] is applied to the planar and circular case of 3/1 resonance for asteroids. Explicit solutions of the intermediate orbit are obtained. All types of motion are described in terms of two parameters. The model is tested against numerical results for a number of asteroids.
Reviewer: P.Smith

70F15 Celestial mechanics
Full Text: DOI
[1] Balthazar, J. M.: 1975, M.Sc. Dissertation (ITA-S. J. Campos).
[2] Borderies, N. and Godreich, P.: 1984,Celes. Mech. 32, 127. · Zbl 0542.70016 · doi:10.1007/BF01231120
[3] Brouwer, D. and Clemence, G.: 1961,Methods of Celestial Mechanics, Academic Press. · Zbl 0132.23506
[4] Byrd, P. F. and Friedman, M. D.: 1971,Handbook of Elliptic Integrals For Engineers and Physicists, Springer Verlag. · Zbl 0213.16602
[5] Henrard, J. and Lemaitre, A.: 1983,Celes. Mech. 30, 197. · Zbl 0513.70012 · doi:10.1007/BF01234306
[6] Hori, G.: 1966,Publ. Astron. Soc. Japan 18, 287.
[7] Jefferys, W. H.: 1966,Astron. J. 71, 306. · doi:10.1086/109922
[8] Kozai, Y.: 1985,Celes. Mech. 36, 47. · Zbl 0577.70014 · doi:10.1007/BF01241042
[9] Lemaitre, A.: 1984,Celes. Mech. 32, 109. · Zbl 0591.70025 · doi:10.1007/BF01231119
[10] Marsden, B. G.: 1985,Personal Communication.
[11] Marsden, B. G.: 1970,Astron. J. 75, 206. · doi:10.1086/110964
[12] Sato, M.: 1985, Thesis, University of São Paulo, S. Paulo.
[13] Schweizer, F.: 1969, Astron. J.74, 779. · doi:10.1086/110858
[14] Schubart, J.: 1964,Smithson. Inst. Astrophys. Obs. Special Rep. n. 149.
[15] Sinclair, A. T.: 1969,Mon. Not. R. Astr. Soc. 142, 289. · doi:10.1093/mnras/142.3.289
[16] Tisserand, F.: 1888,Traite de Mecanique Celeste Vol. I, Gauthier Villars.
[17] Tsuchida, M.: 1985, inResonances in the Motions of Planets, Satellites and Asteroids, Ferraz-Mello, S. and Sessin, W. (eds.), Univ. São Paulo, S. Paulo, p. 149.
[18] Wisdom, J.: 1982,Astron. J. 87, 577. · doi:10.1086/113132
[19] Wisdom, J.: 1983,Icarus 56, 51. · doi:10.1016/0019-1035(83)90127-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.