zbMATH — the first resource for mathematics

Orbit propagation in Minkowskian geometry. (English) Zbl 1322.70026
Summary: The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time \(\mathbb M\) are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane \(\mathbb R_1^2\) in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in \(\mathbb R_1^2\), the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

70M20 Orbital mechanics
70F15 Celestial mechanics
37D05 Dynamical systems with hyperbolic orbits and sets
37N05 Dynamical systems in classical and celestial mechanics
Full Text: DOI
[1] Ahlfors, L.V.: Complex Analysis. Krishna Prakashan Media, Meerut (1966) · Zbl 0154.31904
[2] Altobelli, N; Kempf, S; Landgraf, M; Srama, R; etal., Cassini between venus and Earth: detection of interstellar dust, J Geophys. Res.: Space, 108, a10, (2003)
[3] Baù, G., Urrutxua, H., Peláez, J.: EDROMO: an accurate propagator for elliptical orbits in the perturbed two-body problem. Adv Astronaut Sci. 14, 379-399 (2014) · Zbl 1332.70030
[4] Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, San Diego (1999) · Zbl 0972.70001
[5] Bertotti, B; Iess, L; Tortora, P, A test of general relativity using radio links with the Cassini spacecraft, Nature, 425, 374-376, (2003)
[6] Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers. Birkhäuser, Basel, Boston (2008) · Zbl 1151.53001
[7] Bond, VR, Error propagation in the numerical solutions of the differential equations of orbital mechanics, Celest. Mech., 27, 65-77, (1982) · Zbl 0499.70040
[8] Burdet, CA, Theory of Kepler motion: the general perturbed two body problem, Zeitschrift fr angewandte Mathematik und Physik ZAMP, 19, 345-368, (1968) · Zbl 0197.21103
[9] Burton, M; Buratti, B; Matson, D; Lebreton, J, The Cassini/Huygens venus and Earth flybys: an overview of operations and results, J. Geophys. Res.: Space, 106, 30099-30107, (2001)
[10] Carinena, JF; López, C; Olmo, MA; Santander, M, Conformal geometry of the Kepler orbit space, Celest. Mech. Dyn. Astron., 52, 307-343, (1991) · Zbl 0751.70006
[11] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Zampetti, P.: Geometry of Minkowski Space-Time. Springer, Berlin (2011) · Zbl 1220.51003
[12] Deprit, A, Ideal elements for perturbed Keplerian motions, J. Res. Natl. Bur Stand., 79B, 1-15, (1975) · Zbl 0326.70010
[13] Deprit, A, Ideal frames for perturbed Keplerian motions, Celest. Mech., 13, 253-263, (1976) · Zbl 0356.70010
[14] Deprit, A; Elipe, A; Ferrer, S, Linearization: Laplace vs. Stiefel, Celest. Mech. Dyn. Astron., 58, 151-201, (1994)
[15] Everhart, E, The evolution of comet orbits, NASA Spec. Publ., 393, 445-464, (1976)
[16] Ferrándiz, J, A general canonical transformation increasing the number of variables with application to the two-body problem, Celest. Mech., 41, 343-357, (1987) · Zbl 0648.70009
[17] Ferraz-Mello, S; Nesvorny, D; Michtchenko, T, Chaos, diffusion, escape and permanence of resonant asteroids in gaps and groups, Solar Syst. Form. Evol., 149, 65-82, (1998)
[18] Fjelstad, P, Extending special relativity via the perplex numbers, Am. J. Phys., 54, 416-422, (1986)
[19] Flandro, G, Fast reconnaissance missions to the outer solar system utilizing energy derived from the gravitational field of Jupiter, Astronaut. Acta, 12, 329-337, (1966)
[20] Hajduková, M, Meteors in the IAU meteor data center on hyperbolic orbits, Earth Moon Planets, 102, 67-71, (2008)
[21] Hansen, P.A.: Auseinandersetzung einer zweckmäßigen Methode zur Berechnung der absoluten Störungender Kleinen Planeten. erste Abhandlung, Abhandlungen der mathematisch-physischen Classe der königl. sächsichen Gesellschaft der Wissenschaften, dritter Band, bei S. Hirzel, Leipzig (1857)
[22] Hills, J, Comet showers and the steady-state infall of comets from the Oort cloud, Astron. J., 86, 1730-1740, (1981)
[23] Hindmarsh, AC, ODEPACK—a systematized collection of ODE solvers, IMACS Trans. Sci. Comput., 1, 55-64, (1983)
[24] Ipatov, SI, Migration of trans-Neptunian objects to the Earth, Celest. Mech. Dyn. Astron., 73, 107-116, (1999)
[25] Kantor, I., Solodovnikov, A.S., Shenitzer, A.: Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer, New York (1989) · Zbl 0669.17001
[26] Kohlhase, C; Penzo, P, Voyager mission description, Space Sci. Rev., 21, 77-101, (1977)
[27] Kozai, Y, Secular perturbations of resonant asteroids, Celest. Mech., 36, 47-69, (1985) · Zbl 0577.70014
[28] Królikowska, M, Non-gravitational effects in long-period comets and the size of the Oort cloud, Acta Astrono., 56, 385-412, (2006)
[29] Królikowska, M, A study of the original orbits of “hyperbolic” comets, Astron. Astrophys., 376, 316-324, (2001)
[30] Kustaanheimo, PE; Stiefel, E, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218, 204-219, (1965) · Zbl 0151.34901
[31] Lantoine, G; Russell, RP; Dargent, T, Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Softw., 38, a16, (2012) · Zbl 1365.65055
[32] Laskar, J; Fienga, A; Gastineau, M; Manche, H, La2010: a new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, a89, (2011) · Zbl 1260.85019
[33] Laskar, J; Robutel, P; Joutel, F; Gastineau, M; etal., A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261-285, (2004)
[34] Milani, A; Carpino, M; Hahn, G; Nobili, A, Dynamics of planet-crossing asteroids: classes of orbital behavior: project SPACEGUARD, Icarus, 78, 212-269, (1989)
[35] Milani, A; Knežević, Z, Secular perturbation theory and computation of asteroid proper elements, Celest. Mech. Dyn. Astron., 49, 347-411, (1990) · Zbl 0724.70008
[36] Miller, J; Konopliv, A; Antreasian, P; Bordi, J; etal., Determination of shape, gravity, and rotational state of asteroid 433 eros, Icarus, 155, 3-17, (2002)
[37] Minkowski, H, Raum und zeit, Jahresbericht der deutschen Mathematiker-Vereinigung, 18, 75-88, (1909) · JFM 40.0094.01
[38] Motter, A; Rosa, M, Hyperbolic calculus, Adv. Appl. Clifford Algebra, 8, 109-128, (1998) · Zbl 0922.30035
[39] Muinonen, K; Virtanen, J; Bowell, E, Collision probability for Earth-crossing asteroids using orbital ranging, Celest. Mech. Dyn. Astron., 81, 93-101, (2001) · Zbl 0997.70011
[40] Palacios, M; Abad, A; Elipe, A, An efficient numerical method for orbit computations, Astrodynamics, 1991, 265-274, (1992)
[41] Palacios, M; Calvo, C, Ideal frames and regularization in numerical orbit computation, J. Astronaut. Sci., 44, 63-77, (1996)
[42] Peláez, J; Hedo, JM; Andrés, PR, A special perturbation method in orbital dynamics, Celest. Mech. Dyn. Astron., 97, 131-150, (2007) · Zbl 1162.70022
[43] Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London (2004) · Zbl 1188.00007
[44] Porco, CC; West, RA; McEwen, A; Genio, AD; etal., Cassini imaging of jupiter’s atmosphere, satellites, and rings, Science, 299, 1541-1547, (2003)
[45] Price, G.B.: An introduction to multicomplex spaces and functions. Marcel Dekker, Inc., New York (1991) · Zbl 0729.30040
[46] Rickman, H; Fouchard, M; Froeschlé, C; Valsecchi, GB, Injection of Oort cloud comets: the fundamental role of stellar perturbations, Celest. Mech. Dyn. Astron., 102, 111-132, (2008) · Zbl 1154.70321
[47] Saloom, A; Tari, F, Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedic., 159, 109-124, (2012) · Zbl 1267.53011
[48] Smith, BA; Soderblom, L; Beebe, R; Boyce, J; etal., Encounter with saturn: voyager 1 imaging science results, Science, 212, 163-191, (1981)
[49] Sobczyk, G, The hyperbolic number plane, Coll. Math. J., 26, 268-280, (1995)
[50] Stiefel, E, Remarks on numerical integration of Keplerian orbits, Celest. Mech., 2, 274-281, (1970) · Zbl 0228.70022
[51] Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, New York (1971) · Zbl 0226.70005
[52] Thomas, F; Morbidelli, A, The kozai resonance in the outer solar system and the dynamics of long-period comets, Celest. Mech. Dyn. Astron., 64, 209-229, (1996) · Zbl 1002.70560
[53] Ulrych, S, Relativistic quantum physics with hyperbolic numbers, Phys. Rev. B: Solid State, 625, 313-323, (2005) · Zbl 1247.81188
[54] Urrutxua, H; Sanjurjo-Rivo, M; Peláez, J, DROMO propagator revisited, Adv. Astronaut. Sci., 148, 1809-1828, (2013) · Zbl 1332.70030
[55] Vallado, D.A.: Fundamentals of Astrodynamics and Applications. McGraw-Hill, New York (1997) · Zbl 1191.70002
[56] Valsecchi, G; Milani, A; Gronchi, G; Chesley, S, Resonant returns to close approaches: analytical theory, Astron. Astrophys., 408, 1179-1196, (2003)
[57] Waite, JH; Niemann, H; Yelle, RV; Kasprzak, WT; etal., Ion neutral mass spectrometer results from the first flyby of Titan, Science, 308, 982-986, (2005)
[58] Wehry, A; Mann, I, Identification of beta-meteoroids from measurements of the dust detector onboard the ULYSSES spacecraft, Astron. Astrophys., 341, 296-303, (1999)
[59] Yabushita, S, A statistical study of the evolution of the orbits of long-period comets, Mon. Not. R. Astron. Soc., 187, 445-462, (1979)
[60] Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, New York (1979) · Zbl 0393.51013
[61] Yeomans, D; Barriot, J; Dunham, D; Farquhar, R; etal., Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby, Science, 278, 2106-2109, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.