×

zbMATH — the first resource for mathematics

Towards a sustainable exploitation of the geosynchronous orbital region. (English) Zbl 1451.70042
Summary: In this work the orbital dynamics of Earth satellites about the geosynchronous altitude are explored, with primary goal to assess current mitigation guidelines as well as to discuss the future exploitation of the region. A thorough dynamical mapping was conducted in a high-definition grid of orbital elements, enabled by a fast and accurate semi-analytical propagator, which considers all the relevant perturbations. The results are presented in appropriately selected stability maps to highlight the underlying mechanisms and their interplay, which can lead to stable graveyard orbits or fast re-entry pathways. The natural separation of the long-term evolution between equatorial and inclined satellites is discussed in terms of post-mission disposal strategies. Moreover, we confirm the existence of an effective cleansing mechanism for inclined geosynchronous satellites and discuss its implications in terms of current guidelines as well as alternative mission designs that could lead to a sustainable use of the geosynchronous orbital region.
MSC:
70M20 Orbital mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albuja, A.A., Scheeres, D.J., Cognion, R.L., Ryan, W., Ryan, E.V.: The YORP effect on the GOES 8 and GOES 10 satellites: a case study. Adv. Space Res. 61, 122-144 (2018). https://doi.org/10.1016/j.asr.2017.10.002
[2] Alessi, E.M., Deleflie, F., Rosengren, A.J., Rossi, A., Valsecchi, G.B., Daquin, J., et al.: A numerical investigation on the eccentricity growth of GNSS disposal orbits. Celest. Mech. Dyn. Astron. 125(1), 71-90 (2016). https://doi.org/10.1007/s10569-016-9673-4 · Zbl 1336.70040
[3] Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: Natural highways for end-of-life solutions in the LEO region. Celest. Mech. Dyn. Astron. 130, 34 (2018). https://doi.org/10.1007/s10569-018-9822-z
[4] Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: Solar radiation pressure resonances in low Earth orbits. Mon. Not. R. Astron. Soc. 473, 2407-2414 (2018). https://doi.org/10.1093/mnras/stx2507
[5] Armellin, R., San-Juan, J.F.: Optimal Earth’s reentry disposal of the Galileo constellation. Adv. Space Res. 61, 1097-1120 (2018). https://doi.org/10.1016/j.asr.2017.11.028
[6] Armellin, R., San-Juan, J.F., Lara, M.: End-of-life disposal of high elliptical orbit missions: the case of integral. Advances in asteroid and space debris science and technology-Part 1. Adv. Space Res. 56(3), 479-493 (2015). https://doi.org/10.1016/j.asr.2015.03.020
[7] Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition. American Institute of Aeronautics and Astronautics, Reston (1999) · Zbl 0972.70001
[8] Breiter, S., Wytrzyszczak, I., Melendo, B.: Long-term predictability of orbits around the geosynchronous altitude. Adv. Space Res. 35, 1313-1317 (2005). https://doi.org/10.1016/j.asr.2005.02.033
[9] Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378 (1959). https://doi.org/10.1086/107958
[10] Bruno, M.J., Pernicka, H.J.: Tundra constellation design and stationkeeping. J. Spacecr. Rocket 42, 902-912 (2005). https://doi.org/10.2514/1.7765
[11] Celletti, A., Galeş, C.: On the dynamics of space debris: 1:1 and 2:1 resonances. J. NonLinear Sci. 24, 1231-1262 (2014). https://doi.org/10.1007/s00332-014-9217-6 · Zbl 1302.70036
[12] Celletti, A., Galeş, C., Pucacco, G., Rosengren, A.J.: Analytical development of the lunisolar disturbing function and the critical inclination secular resonance. Celest. Mech. Dyn. Astron. 127, 259-283 (2017). https://doi.org/10.1007/s10569-016-9726-8 · Zbl 1374.70029
[13] Chao, CC; Campbell, S.; Danesy, D. (ed.), Long-term perigee height variations of geo disposal orbits: a revisit, No. 587, 303 (2005), Darmstadt
[14] Chobotov, V.A.: Disposal of spacecraft at end of life in geosynchronous orbit. J. Spacecr. Rocket 27, 433-437 (1990). https://doi.org/10.2514/3.26161
[15] Colombo, C., Letizia, F., Alessi, E.M., Landgraf, M.: End-of-life earth re-entry for highly elliptical orbits: The integral mission. In: AAS 14-325, Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico (2014)
[16] Colombo, C.: Long-term evolution of highly-elliptical orbits: Luni-solar perturbation effects for stability and re-entry. In: AAS-15-395, Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, Virginia (2015)
[17] Colombo, C.: Planetary orbital dynamics (PlanODyn) suite for long term propagation in perturbed environment. In: Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques (ICATT), ESOC/ESA, Darmstadt, Germany, (2016)
[18] Daquin, J., Rosengren, A.J., Alessi, E.M., Deleflie, F., Valsecchi, G.B., Rossi, A.: The dynamical structure of the MEO region: long-term stability, chaos, and transport. Celest. Mech. Dyn. Astron. 124, 335-366 (2016). https://doi.org/10.1007/s10569-015-9665-9 · Zbl 1336.70040
[19] Daquin, J., Gkolias, I., Rosengren, A.J.: Drift and its mediation in terrestrial orbits. Front. Appl. Math. Stat. 4, 35 (2018). https://doi.org/10.3389/fams.2018.00035
[20] Delhaise, F., Morbidelli, A.: Luni-solar effects of geosynchronous orbits at the critical inclination. Celest. Mech. Dyn. Astron. 57, 155-173 (1993). https://doi.org/10.1007/BF00692471 · Zbl 0820.70013
[21] Delong, N.; Frémeaux, C.; Danesy, D. (ed.), Eccentricity management for geostationary satellites during end of life operations, No. 587, 297 (2005), Darmstadt
[22] Efroimsky, M.: Long-term evolution of orbits about a precessing oblate planet: 1. The case of uniform precession. Celest. Mech. Dyn. Astron. 91(1), 75-108 (2005). https://doi.org/10.1007/s10569-004-2415-z · Zbl 1116.70023
[23] ESA: ESA space debris mitigation compliance verification guidelines. ESSB-HB-U-002 (2015)
[24] Fremeaux, C., Moussi, A., Vintenat, L., Moulin, M.: End of life operations for LEO and GEO satellites: 30 years of continuous improvement. In: 6th European Conference on Space Debris, vol. 723, p. 82. ESA Special Publication, Darmstadt (2013)
[25] Gachet, F., Celletti, A., Pucacco, G., Efthymiopoulos, C.: Geostationary secular dynamics revisited: application to high area-to-mass ratio objects. Celest. Mech. Dyn. Astron. 128, 149-181 (2017). https://doi.org/10.1007/s10569-016-9746-4 · Zbl 1367.70054
[26] Gkolias, I., Lara, M., Colombo, C.: An ecliptic perspective for analytical satellite theories. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA/AAS Snowbird, Utah (2018)
[27] Gkolias, I., Daquin, J., Gachet, F., Rosengren, A.J.: From order to chaos in earth satellite orbits. Astron. J. 152, 119 (2016). https://doi.org/10.3847/0004-6256/152/5/119
[28] Goldreich, P.: Inclination of satellite orbits about an oblate precessing planet. Astron. J. 70, 5 (1965). https://doi.org/10.1086/109673
[29] Gurfil, P.: Effect of equinoctial precession on geosynchronous earth satellites. J. Guidance Control Dyn. 30, 237-247 (2007). https://doi.org/10.2514/1.21479
[30] IADC: IADC space debris mitigation guidelines. (2011). http://www.iadc-online.org/. Accessed 28 Mar 2019
[31] Jenkin, A., McVey, J., Peterson, G.: Analysis of a threshold on long-term orbital collision probability. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA/AAS Snowbird, Utah (2018)
[32] Jenkin, A.B., McVey, J.P., Wilson, J.R., Sorge, M.E.: Tundra disposal orbit study. In: Proceedings of the 7th European Conference on Space Debris, Darmstadt (2017)
[33] Jenkin, A., McVey, J.: Lifetime reduction for highly inclined, highly eccentric disposal orbits by changing inclination. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA/AAS Honolulu, Hawaii (2008)
[34] Kaufman, B., Dasenbrock, R.: Higher order theory for long-term behavior of earth and lunar orbiters. In: Technical Report, Naval Research Lab Washington DC Operations research branch (1972)
[35] Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astron. J. 67, 300 (1962). https://doi.org/10.1086/108729
[36] Kaula, W.M.: Theory of Satellite Geodesy. Applications of Satellites to Geodesy. Blaisdell, Waltham, Mass (1966) · Zbl 0973.86001
[37] Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962). https://doi.org/10.1086/108790
[38] Kozai, Y., Kinoshita, H.: Effects of motion of the equatorial plane on the orbital elements of an Earth satellite. Celest. Mech. 7, 356-366 (1973). https://doi.org/10.1007/BF01227855 · Zbl 0251.70016
[39] Krivov, A.V., Getino, J.: Orbital evolution of high-altitude balloon satellites. Astron. Astrophys. 318, 308-314 (1997)
[40] Lane, M.T.: On analytic modeling of lunar perturbations of artificial satellites of the earth. Celest. Mech. Dyn. Astron. 46, 287-305 (1989). https://doi.org/10.1007/BF00051484 · Zbl 0682.70025
[41] Lara, M., Elipe, A.: Periodic orbits around geostationary positions. Celest. Mech. Dyn. Astron. 82, 285-299 (2002). https://doi.org/10.1023/A:1015046613477 · Zbl 0994.70020
[42] Lidov, M.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9(10), 719-759 (1962). https://doi.org/10.1016/0032-0633(62)90129-0
[43] Lieske, J.H., Lederle, T., Fricke, W., Morando, B.: Expressions for the precession quantities based upon the IAU (1976) system of astronomical constants. Astron. Astrophys. 58, 1-16 (1977)
[44] Liu, J.J.F., Alford, R.L.: Semianalytic theory for a close-Earth artificial satellite. J. Guidance Control Dyn. 3, 304-311 (1980). https://doi.org/10.2514/3.55994
[45] Meeus, J.: Astronomical Algorithms (1998)
[46] Merz, K., Krag, H., Lemmens, S., Funke, Q., Böttger, S., Sieg, D., et al.: Orbit aspects of end-of-life disposal from highly eccentric orbits. In: Proceedings of the 25th International Symposium on Space Flight Dynamics ISSFD, Munich, Germany (2015)
[47] Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods and Applications. Springer, Berlin (2012) · Zbl 0949.70001
[48] Rosengren, A.J., Alessi, E.M., Rossi, A., Valsecchi, G.B.: Chaos in navigation satellite orbits caused by the perturbed motion of the Moon. Mon. Not. R. Astron. Soc. 449, 3522-3526 (2015). https://doi.org/10.1093/mnras/stv534
[49] Rosengren, A.J., Daquin, J., Tsiganis, K., Alessi, E.M., Deleflie, F., Rossi, A., et al.: Galileo disposal strategy: stability, chaos and predictability. Mon. Not. R. Astron. Soc. 464, 4063-4076 (2017). https://doi.org/10.1093/mnras/stw2459
[50] Rosengren, A.J., Skoulidou, D.K., Tsiganis, K., Voyatzis, G.: Dynamical cartography of earth satellite orbits. Adv. Space Res. 63, 443-460 (2018). https://doi.org/10.1016/j.asr.2018.09.004
[51] Rossi, A., Colombo, C., Tsiganis, K., Beck, J., Rodriguez, J.B., Walker, S., et al.: Redshift: a global approach to space debris mitigation. Aerospace 5(2), 64 (2018). https://doi.org/10.3390/aerospace5020064
[52] Schildknecht, T., Musci, R., Ploner, M., Beutler, G., Flury, W., Kuusela, J., et al.: Optical observations of space debris in GEO and in highly-eccentric orbits. Adv. Space Res. 34, 901-911 (2004). https://doi.org/10.1016/j.asr.2003.01.009
[53] Skoulidou, D.K., Rosengren, A.J., Tsiganis, K., Voyatzis, G.: Cartographic study of the meo phase space for passive debris removal. In: Proceedings of the 7th European Conference on Space Debris, Darmstadt (2017)
[54] Valk, S., Delsate, N., Lemaître, A., Carletti, T.: Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator. Adv. Space Res. 43, 1509-1526 (2009). https://doi.org/10.1016/j.asr.2009.02.014
[55] Wytrzyszczak, I., Breiter, S., Borczyk, W.: Regular and chaotic motion of high altitude satellites. Adv. Space Res. 40, 134-142 (2007). https://doi.org/10.1016/j.asr.2006.11.020
[56] Zhang, M.J., Zhao, C.Y., Hou, Y.G., Zhu, T.L., Wang, H.B., Sun, R.Y., et al.: Long-term dynamical evolution of Tundra-type orbits. Adv. Space Res. 59, 682-697 (2017). https://doi.org/10.1016/j.asr.2016.10.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.