zbMATH — the first resource for mathematics

A note on lower bounds for relative equilibria in the main problem of artificial satellite theory. (English) Zbl 1162.70327
Summary: In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when \(H\) may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.

70M20 Orbital mechanics
70F15 Celestial mechanics
Full Text: DOI
[1] Broucke R. (1994). Numerical integration of periodic orbits in the main problem of artificial satellite. Celest. Mech. Dyn. Astr. 58: 99–123 · doi:10.1007/BF00695787
[2] Brouwer D. (1959). Solution of the problem of artificial satellite theory without drag. Astron. J. 64: 378–397 · doi:10.1086/107958
[3] Chang D.E. and Marsden J. (2003). Geometric derivation of the Delaunay variables and geometric phases. Celest. Mech. Dyn. Astr. 86: 185–208 · Zbl 1062.70010 · doi:10.1023/A:1024174702036
[4] Coffey S.L. and Deprit A. (1982). Third-order solution to the main problem in satellite theory. J. Guidance Control Dyn. 5: 366–371 · Zbl 0508.70010 · doi:10.2514/3.56183
[5] Coffey S.L., Deprit A. and Miller B.R. (1986a). The nature of the critical inclinations in artificial satellite theory. In: Bathnagar, K.B. (eds) Space Dynamics and Celestial Mechanics. ASSL, vol. 127, pp 39–54. Reidel, Dordrecht · Zbl 0645.70018
[6] Coffey S.L., Deprit A. and Miller B.R. (1986b). The critical inclination in artificial satellite theory. Celest. Mech. 39: 365–406 · Zbl 0645.70018 · doi:10.1007/BF01230483
[7] Coffey S.L., Deprit A. and Deprit E. (1994). Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astr. 59: 37–72 · Zbl 0840.70020 · doi:10.1007/BF00691970
[8] Cushman, R.: Reduction, Brouwer’s Hamiltonian, and the critical inclination. Celest. Mech. 31, 401–429 (1983); Errata Celest. Mech. 33, 297 (1984) · Zbl 0559.70026
[9] Cushman R. (1988). An analysis of the critical inclination problem using singularity theory. Celest. Mech. 42: 39–51
[10] Cushman R. (1991). A survey of normalization techniques applied to perturbed Keplerian systems. In: Jones, C.K. (eds) Dynamics Reported. Expositions in Dynamical Systems, pp 54–112. Springer-Verlag, Berlin · Zbl 0749.70006
[11] Delaunay, C.: Théorie du mouvement de la lune. Acad. Sci. France, Paris. Mem. 28 (1860); 29 (1867)
[12] Deprit A. (1981). The elimination of the parallax in satellite theory. Celest. Mech. 24: 111–153 · Zbl 0492.70024 · doi:10.1007/BF01229192
[13] Deprit A. (1985). Transactions of the IAU, vol. XIXB. Reidel, Dordrecht, 105
[14] Ferrer, S., San-Juan, J.F., Abad, A.: A compact ephemerides generator for almost polar orbits. In preparation (2007)
[15] Healy L.M. (2000). The main problem in satellite theory revisited. Celest. Mech. Dyn. Astr. 76: 79–120 · Zbl 0961.70018 · doi:10.1023/A:1008305628985
[16] Hori G. (1973). Theory of general perturbations. In: Tapley, B.D. and Szebehely, V. (eds) Recent Advances in Dynamical Astronomy, pp 231–249. Reidel, Dordrecht · Zbl 0272.70009
[17] Hori G. and Kozai Y. (1975). Analytical theories of the motion of artificial satellites. In: Giacaglia, G.E.O. (eds) Satellite Dynamics, pp 1–15. Springer-Verlag, Berlin · Zbl 0317.70040
[18] Hough M.E. (1981a). Orbits near critical inclination, including lunisolar perturbations. Celest. Mech. 25: 111–136 · Zbl 0471.70014 · doi:10.1007/BF01230514
[19] Hough M.E. (1981b). Sun-Synchronous orbits near critical inclination. Celest. Mech. 25: 137–157 · Zbl 0467.70030 · doi:10.1007/BF01230515
[20] Lara M. (1997). On periodic polar orbits in the artificial satellite problem. J. Astron. Sci. 45(3): 321–328
[21] Peters C.F. (1970). Motion of space probe near an oblate planet. In: Giacaglia, G.E.O. (eds) Periodic Orbits, Stability and Resonances, pp 469–473. Reidel, Dordrecht · Zbl 0236.70035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.