×

On nonlinear Volterra integral equations with state dependent delays in several variables. (English) Zbl 1209.45004

Consider \(G= [0,a]\subset\mathbb{R}^n\), \(a\in\mathbb{R}^n_+\), \(\Omega= [-r,a]\subset\mathbb{R}^n\), \(r\in\mathbb{R}^n_+\), \(B=\Omega\setminus G\subset \mathbb{R}^n\), \(E\) a Banach space, \(u:\Omega\to E\), a function defined by \(u_x(\tau)= u(x+\tau)\) for \(x\in G\) and \(\tau\in B\), \(F\in C(G\times E^m\times C(B,E),E)\) for \(m\in N\), \(f\in C(G^2\times C(B,E), E^m)\), \(\theta\in C(G\times C(B,E),G)\), \(\psi\in C(G\times C(B, E), G^m)\), \(\beta\in C(G,G)\), \(\alpha\in C(G,G^m)\), \(\varphi\in C(B,E)\) and \(H= (H_1,\dots, H_m): G\to \mathbb{R}^m\), where for \(1\leq i\leq m\) and \(x\in G\), \(H_i(x)\) is a subset of a \(p_i\)-dimensional hyperplane parallel to the coordinate axes, being Lebesgue measurable for \(1\leq p_i\leq n\).
The authors consider the Cauchy problem
\[ \begin{cases} u(x)= F(x, \int_{H(x)} f(x,s,u_{\psi(s,u_\alpha(s))})\,ds, u_{\theta(x, u_\beta(x))}),\quad & x\in G,\\ u(x)= \varphi(x),\quad x\in B,\end{cases}\tag{1} \]
and prove that the Cauchy problem (1) has a unique solution in a class defined in Lemmas 2.2 and 2.3, under hypotheses given in these lemmas.

MSC:

45G10 Other nonlinear integral equations
45D05 Volterra integral equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Angelov, V. G. and Ba\?ınov, D. D., Existence and uniqueness of the global solution of the initial value problem for neutral type differential-functional equations in Banach space. Nonlin. Anal. 4 (1980), 93 - 107. · Zbl 0428.34043 · doi:10.1016/0362-546X(80)90040-1
[2] Czlapiński, T., On some nonlinear Volterra integral-functional equations in several variables. Anal. Math. 20 (1994), 241 - 253. · Zbl 0842.45006 · doi:10.1007/BF01904055
[3] Golaszewska, A., Existence and uniqueness for neutral equations with delay de- pendent on a solution and its derivative. Int. J. Pure Appl. Math. 29 (2006)(3), 349 - 384. · Zbl 1123.35085
[4] Golaszewska, A., Generalized solutions of mixed problems for first order partial differential equations with state dependent delays. Int. J. Pure Appl. Math. 29 (2006)(3), 349 - 384. · Zbl 1123.35085
[5] Golaszewska, A. and Turo, J., Existence and uniqueness for neutral equations with state dependent delays. Qual. Theory Diff. Equ. Appl. (to appear). · Zbl 1161.34053
[6] Golaszewska, A. and Turo, J., Caratheodory solutions to quasi-linear hyper- bolic systems of partial differential equations with state dependent delays. Funct. Diff. Equ. 14 (2007)(2-4), 257 - 278. · Zbl 1135.35087
[7] Hale, J. K. and Cruz, M. A., Existence, uniqueness, and continuous dependence for hereditary systems. Ann. Math. Pura. Appl. 85 (1970), 63 - 81. · Zbl 0194.41002 · doi:10.1007/BF02413530
[8] Hartung, F., Herdman, T. L. and Turi, J., On existence, uniqueness and nu- merical approximation for neutral equations with state-dependent delays. Appl. Numer. Math. 24 (1997), 393 - 409. · Zbl 0939.65101 · doi:10.1016/S0168-9274(97)00035-4
[9] Hartung, F., Herdman, T. L. and Turi, J., Parameter indentification in classes of neutral differential equations with state-dependent delays. Nonlin. Anal. 39 (2000), 305 - 325. 105 · Zbl 0955.34067 · doi:10.1016/S0362-546X(98)00169-2
[10] Hartung, F., Krisztin, T., Walther, H.-O. and Wu, J., Functional differential equations with state-dependent delay: theory and applications. In: Handbook of Differential Equations: Ordinary Differential Equations. Vol. III. Amster- dam: Elsevier/North-Holland 2006, pp. 435 - 545.
[11] Jackiewicz, Z., Existence and uniqueness of solutions of neutral delay- differential equations with state dependent delays. Funkcial. Ekvac. 30 (1987), 9 - 17. · Zbl 0631.34006
[12] Jackiewicz, Z., A note on the existence and uniqueness of solutions of neutral functional-differential equations with state dependent delays. Comment. Math. Univ. Carolin. 36 (1995), 15 - 17. · Zbl 0920.34064
[13] Jankowski, T. and Kwapisz, M., On the existence and uniqueness of solutions of systems of differential equations with a deviated argument. Ann. Polon. Math. 26 (1972), 253 - 277. · Zbl 0247.34072
[14] Kamont, Z., Hyperbolic Functional Differential Inequalities and Applications. Dordrecht: Kluwer 1999. · Zbl 0973.35188
[15] Kamont, Z., Initial problems for neutral functional differential equations with unbounded delay. Studia Sci. Math. Hungar. 40 (2003), 309 - 326. · Zbl 1054.34131 · doi:10.1556/SScMath.40.2003.3.5
[16] Kamont, Z., First order partial functional differential equations with state dependent delays. Nonlinear Stud. 12 (2005), 135 - 157. · Zbl 1078.35127
[17] Kamont, Z. and Kwapisz, M., On the Cauchy problem for differential-delay equations in a Banach space. Math. Nachr. 74 (1976), 173 - 190. · Zbl 0288.34069 · doi:10.1002/mana.3210740113
[18] Kamont, Z. and Kwapisz, M., On nonlinear Volterra integral-functional equa- tions in several variables. Ann. Polon. Math. 40 (1981), 1 - 29. · Zbl 0486.45011
[19] Kamont, Z. and Turo, J., Caratheodory solutions to hyperbolic functional differential systems with state dependent delays. Rocky Mountain J. Math. 35 (2005), 1935 - 1952. · Zbl 1106.35125 · doi:10.1216/rmjm/1181069624
[20] Konstantinow, M. M. and Bainow, D. D., On the existence of solutions of systems of functional equations over neutral type with the iterative delay (in Russian). Diff. Uravnenija 10 (1974), 1988 - 1992. · Zbl 0324.34064
[21] Kwapisz, M., On the existence and uniqueness of solutions of a certain integral- functional equations. Ann. Polon. Math. 31 (1975), 23 - 41. · Zbl 0261.45005
[22] Kwapisz, M. and Turo, J., On some integral-functional equations with an un- known function of n variables. Bull. Acad. Polon. Sci. Sér. Sci. Math. As- tronom. Phys. 22 (1974), 1001 - 1009. · Zbl 0294.45006
[23] Kwapisz, M. and Turo, J., On the existence and uniqueness of solutions of the Darboux problem for partial differential-functional equations. Colloq. Math. 29 (1974), 279 - 302. · Zbl 0284.35036
[24] Kwapisz, M. and Turo, J., On the existence and uniqueness of solutions of the Darboux problem for partial differential-functional equations in a Banach space. Ann. Polon. Math. 29 (1974), 89 - 118. · Zbl 0243.35063
[25] Kwapisz, M. and Turo, J., Existence and uniqueness of solutions for some integral-functional equation. Comment. Math. Prace Mat. 23 (1983), 259 - 267. A. Golaszewska and J. Turo · Zbl 0547.45012
[26] Kwapisz, M. and Turo, J., On the existence and uniqueness of integrable solu- tions of functional equations in a Banach space. Aequationes Math. 19 (1979), 53 - 65. · Zbl 0426.45017 · doi:10.1007/BF02189846
[27] Kwapisz, M. and Turo, J., Existence, uniqueness and succesive approxima- tions for a class of integral-functional equations. Aequationes Math. 14 (1976), 303 - 323. · Zbl 0329.45012 · doi:10.1007/BF01835980
[28] Kwapisz, M. and Turo, J., Some integral-functional equations. Funkcial. Ekvac. 18 (1975), 107 - 162. · Zbl 0329.45011
[29] Kwapisz, M. and Turo, J., On the existence and convergence of succesive ap- proximations for some functional equations in a Banach space. J. Diff. Equ. 16 (1973), 289 - 318. · Zbl 0263.39005 · doi:10.1016/0022-0396(74)90017-5
[30] Pavel, P., Sur une équation aux dérivées partielles (in French). Seminar on Dif- ferential Equations. Preprint 88-8. Cluj-Napoca: Univ. “Babes-Bolyai” 1988, pp. 71 - 86 · Zbl 0666.35053
[31] Rzepecki, B., On hyperbolic partial differential equations in Banach spaces. Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 80 (1986), 540 - 544. · Zbl 0678.35068
[32] Walter, W., On nonlinear Volterra integral equations in several variables. J. Math. Mech. 16 (1967)(9), 967 - 985. · Zbl 0149.33101
[33] Walter, W., Differential and Integral Inequalities. Berlin: Springer 1970.
[34] \?Zywotowskij, L. A., Existence and uniqueness of solutions for differential neu- tral equations with delay dependent on a solution and its derivative. Diff. Equ. 5 (1971), 1377 - 1384.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.