zbMATH — the first resource for mathematics

Ergodicity for infinite particle systems with locally conserved quantities. (English) Zbl 1268.60120
The paper analyses degenerate infinite-dimensional sub-elliptic generators, and obtains estimates on the long-term behavior of the corresponding Markov semigroups that describe a model of heat conduction. The authors also establish ergodicity of the system for a family of invariant measures, and show that the optimal rate of convergence to the equilibrium state is polynomial. Also, the Liggett-Nash-type inequality appears to be valid. Section 2 introduces the basic notation, and states an infinite system of stochastic differential equations of interest. The existence of a mild solution is considered in Section 3, whereas Section 4 discusses general properties of the corresponding semigroup, in particular, the existence of a family of invariant measures, strong continuity, positivity, and contractivity properties in \(L^2\)-spaces. Section 5 provides a certain characterisation of invariant sub-spaces (of Sobolev type). Ergodicity with optimal rate of convergence to the equilibrium state is demonstrated in Section 6. Section 7 derives the Liggett-Nash-type inequalities on the basis of the obtained results. A generalized dynamics of the related type, complemented with some extra features, is the topic of Section 8. It deals with the phase transitions in the stochastic paradigm. The paper also shows that, in the considered families, one can observe a change in the behavior of the decay to the equilibrium state from exponential to algebraic. Further application of the ergodicity results are in the focus of Section 9. The paper includes the detailed proofs of the aforementioned results.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60H30 Applications of stochastic analysis (to PDEs, etc.)
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI arXiv
[1] DOI: 10.1016/j.spa.2006.08.006 · Zbl 1112.60075 · doi:10.1016/j.spa.2006.08.006
[2] DOI: 10.1063/1.3000580 · Zbl 1152.81335 · doi:10.1063/1.3000580
[3] DOI: 10.1007/s10955-005-7578-9 · Zbl 1127.82042 · doi:10.1007/s10955-005-7578-9
[4] DOI: 10.1006/jfan.1997.3157 · Zbl 0932.60061 · doi:10.1006/jfan.1997.3157
[5] Bertini L., Markov Process. Relat. Fields 5 pp 125–
[6] DOI: 10.1007/s10955-008-9657-1 · Zbl 1173.82017 · doi:10.1007/s10955-008-9657-1
[7] DOI: 10.1016/j.spa.2006.12.003 · Zbl 1132.60069 · doi:10.1016/j.spa.2006.12.003
[8] DOI: 10.1007/BF02573496 · Zbl 0817.47048 · doi:10.1007/BF02573496
[9] DOI: 10.1007/s10955-005-8070-2 · Zbl 1149.82020 · doi:10.1007/s10955-005-8070-2
[10] Giardinà C., J. Math. Phys. 48 pp 103–
[11] DOI: 10.1006/jdeq.2000.3918 · Zbl 1003.60070 · doi:10.1006/jdeq.2000.3918
[12] Ikeda N., Stochastic Differential Equations and Diffusion Processes (1981) · Zbl 0495.60005
[13] Janvresse E., Ann. Probab. 27 pp 325–
[14] DOI: 10.1007/BF01210789 · Zbl 0588.60058 · doi:10.1007/BF01210789
[15] Komorowski T., Bull. Pol. Acad. Sci. 51 pp 217–
[16] DOI: 10.1088/0305-4470/33/33/308 · Zbl 0980.82019 · doi:10.1088/0305-4470/33/33/308
[17] Landim C., Ann. Probab. 31 pp 115–
[18] DOI: 10.1214/aop/1176990330 · Zbl 0737.60092 · doi:10.1214/aop/1176990330
[19] Liggett T., Interacting Particle Systems (2004) · Zbl 1221.60141
[20] DOI: 10.1016/j.jfa.2007.03.006 · Zbl 1128.58009 · doi:10.1016/j.jfa.2007.03.006
[21] DOI: 10.1007/978-3-642-77739-4 · doi:10.1007/978-3-642-77739-4
[22] DOI: 10.2307/2372841 · Zbl 0096.06902 · doi:10.2307/2372841
[23] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223
[24] DOI: 10.1007/s002330010047 · Zbl 0987.47034 · doi:10.1007/s002330010047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.