×

Three-particle integrable systems with elliptic dependence on momenta and theta function identities. (English) Zbl 1331.81135

Summary: We claim that some non-trivial theta-function identities at higher genus can stand behind the Poisson commutativity of the Hamiltonians of elliptic integrable systems, which were introduced in [H. W. Braden et al., Nucl. Phys., B 573, No. 1–2, 553–572 (2000; Zbl 0947.81025); A. Mironov and A. Morozov, Phys. Lett., B 475, No. 1–2, 71–76 (2000; Zbl 1049.81648)] and are made from the theta-functions on Jacobians of the Seiberg-Witten curves. For the case of three-particle systems the genus-2 identities are found and presented in the Letter. The connection with the Macdonald identities is established. The genus-2 theta-function identities provide the direct way to construct the Poisson structure in terms of the coordinates on the Jacobian of the spectral curve and the elements of its period matrix. The Lax representations for the two-particle systems are also obtained.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Braden, H. W.; Marshakov, A.; Mironov, A.; Morozov, A., On double-elliptic integrable systems 1. A duality argument for the case of \(SU(2)\), Nucl. Phys. B, 573, 1, 553-572 (2000) · Zbl 0947.81025
[2] Mironov, A.; Morozov, A., Commuting Hamiltonians from Seiberg-Witten theta-functions, Phys. Lett. B, 475, 1, 71-76 (2000) · Zbl 1049.81648
[3] Braden, H. W.; Marshakov, A.; Mironov, A.; Morozov, A., The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory, Nucl. Phys. B, 558, 1-2, 371-390 (1999) · Zbl 1068.81601
[4] Olshanetsky, M. A.; Perelomov, A. M., Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep., 71, 5, 313-400 (1981)
[5] Ruijsenaars, S. N.M., Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys., 110, 2, 191-213 (1987) · Zbl 0673.58024
[6] Ruijsenaars, S. N.M., Action-angle maps and scattering theory for some finite-dimensional integrable systems, Commun. Math. Phys., 115, 1, 127-165 (1988) · Zbl 0667.58016
[7] Mironov, A.; Morozov, A., Double elliptic systems: Problems and perspectives (2000)
[8] Fock, V.; Gorsky, A.; Nekrasov, N.; Rubtsov, V., Duality in integrable systems and gauge theories, J. High Energy Phys., 0007 (2000) · Zbl 0995.37044
[9] Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in \(N = 2\) supersymmetric Yang-Mills theory, Nucl. Phys. B, 426, 1, 19-52 (1994) · Zbl 0996.81510
[10] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in \(N = 2\) supersymmetric QCD, Nucl. Phys. B, 431, 3, 484-550 (1994) · Zbl 1020.81911
[11] Witten, E., Bound states of strings and p-branes, Nucl. Phys. B, 460, 2, 335-350 (1996) · Zbl 1003.81527
[12] Gorsky, A.; Marshakov, A.; Mironov, A.; Morozov, A., A note on spectral curve for the periodic homogeneous XYZ-spin chain (1996)
[13] Diaconescu, D.-E., D-branes, monopoles and Nahm equations, Nucl. Phys. B, 503, 1-2, 220-238 (1997) · Zbl 0938.81034
[14] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 1-2, 152-190 (1997) · Zbl 0996.58509
[15] Gorsky, A.; Gukov, S.; Mironov, A., Multiscale \(N = 2\) SUSY field theories, integrable systems and their stringy/brane origin, Nucl. Phys. B, 517, 1-3, 409-461 (1998) · Zbl 0920.58068
[16] Witten, E., Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B, 500, 1-3, 3-42 (1997) · Zbl 0934.81066
[17] Marshakov, A.; Martellini, M.; Morozov, A., Insights and puzzles from branes: 4d SUSY Yang-Mills from 6d models, Phys. Lett. B, 418, 3-4, 294-302 (1998)
[19] Gaiotto, Davide, \(N = 2\) dualities, J. High Energy Phys., 2012, 8 (2012) · Zbl 1334.81096
[20] Gorsky, A.; Krichever, I.; Marshakov, A.; Mironov, A.; Morozov, A., Integrability and Seiberg-Witten exact solution, Phys. Lett. B, 355, 3-4, 466-474 (1995) · Zbl 0997.81567
[21] Donagi, R.; Witten, E., Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B, 460, 2, 299-334 (1996) · Zbl 0996.37507
[22] Mironov, A.; Morozov, A., Nekrasov functions from exact Bohr-Sommerfeld periods: the case of \(SU(N)\), J. Phys. A, Math. Theor., 43, 19 (2010) · Zbl 1189.81237
[23] Nekrasov, Nikita A.; Shatashvili, Samson L., Quantization of integrable systems and four dimensional gauge theories, (XVI Congress on Mathematical Physics (2009)), 265-289 · Zbl 1214.83049
[24] Nekrasov, N.; Rosly, A.; Shatashvili, S., Darboux coordinates, Yang-Yang functional, and gauge theory, Nucl. Phys. B, Proc. Suppl., 216, 1, 69-93 (2011)
[25] Zenkevich, Y., Nekrasov prepotential with fundamental matter from the quantum spin chain, Phys. Lett. B, 701, 5, 630-639 (2011)
[26] Mironov, A.; Morozov, A.; Zenkevich, Y.; Zotov, A., Spectral duality in integrable systems from AGT conjecture, JETP Lett., 97, 1, 45-51 (2013)
[27] Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A., Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys., 103, 3, 299-329 (2013) · Zbl 1262.14040
[28] Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A., Spectral dualities in XXZ spin chains and five dimensional gauge theories · Zbl 1342.81310
[29] Macdonald, I. G., Affine root systems and Dedekindʼs \(η\)-function, Invent. Math., 15, 2, 91-143 (1971) · Zbl 0244.17005
[30] Braden, H. W.; Marshakov, A.; Mironov, A.; Morozov, A., WDVV equations for 6d Seiberg-Witten theory and bi-elliptic curves, Acta Appl. Math., 99, 3, 223-244 (2007) · Zbl 1126.81044
[31] Koizumi, S., Theta relations and projective normality of abelian varieties, Am. J. Math., 98, 4, 865-889 (1976) · Zbl 0347.14023
[32] Levin, A.; Olshanetsky, M.; Smirnov, A.; Zotov, A., Calogero-Moser systems for simple Lie groups and characteristic classes of bundles, J. Geom. Phys., 62, 8, 1810-1850 (2012) · Zbl 1261.37031
[33] Chernyakov, Yu.; Levin, A.; Olshanetsky, M.; Zotov, A., Quadratic algebras related to elliptic curves, Theor. Math. Phys., 156, 2, 1103-1122 (2008) · Zbl 1160.37023
[34] Fehér, L., Poisson-Lie interpretation of trigonometric Ruijsenaars duality, Commun. Math. Phys., 301, 1, 55-104 (2011) · Zbl 1208.53085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.