Semiclassical lattice hydrodynamics of rarefied channel flows. (English) Zbl 1428.76161

Summary: The two-dimensional channel flows of gas of arbitrary statistics in the slip and transition regimes as characterized by the Knudsen number are studied using a newly developed semiclassical lattice Boltzmann method. The method is directly derived by projecting the Uehling-Uhlenbeck Boltzmann-BGK equations onto the tensor Hermite polynomials using moment expansion method. The intrinsic discrete nodes of the Gauss-Hermite quadrature provide the natural lattice velocities for the semiclassical lattice Boltzmann method. The mass flow rates and the velocity profiles are calculated for the three particle statistics over wide range of Knudsen numbers and the Knudsen minimum can be captured. The results indicate distinct characteristics of the effects of quantum statistics.


76M28 Particle methods and lattice-gas methods
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI


[1] Knudsen, M., Die gesetze der molecular stromung und dieinneren reibungstromung der gase durch rohren, Ann. phys., 28, 75-130, (1909) · JFM 40.0825.02
[2] Whitworth, R.W., Experiments on the flow of heat in liquid helium below 0.7K, Proc. roy. soc. A, 246, 390, (1958)
[3] Benin, D.; Maris, H., Phonon heat transport and knudsen’s minimum in liquid helium at low temperatures, Phys. rev. B, 18, 3112, (1978)
[4] Jensen, H.H.; Smith, H.; Wölfle, P.; Nagai, K.; Bisgaard, T.M., Boundary effects in fluid flow. application to quantum liquids, J. low temp. phys, 41, 473, (1980)
[5] Sawkey, D.; Harrison, J.P., Volume flow in liquid ^{3}he in the Knudsen and Poiseuille regions, Physica B, 112, 329-333, (2003)
[6] Kanki, T.; Iuchi, S., Poiseuille flow and thermal creep of a rarefied gas between parallel plates, Phys. fluids, 16, 5, 594-599, (1973) · Zbl 0267.76060
[7] Zhang, R.; Shan, X.; Chen, H., Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation, Phys. rev. E, 74, 046703, (2006)
[8] Yudistiawan, W.P.; Ansumali, S.; Karlin, I.V., Hydrodynamics beyond Navier-Stokes: the slip flow model, Phys. rev. E, 78, 016705, (2008)
[9] Shen, C.; Fan, J.; Xie, C., Statistical simulation of rarefied gas flows in micro-channels, J. comput. phys., 189, 512, (2003) · Zbl 1061.76515
[10] Gad-el-Hak, M., The fluid mechanics of microdevices, J. fluids eng., 121, 5-33, (1999)
[11] Karniadakis, G.E.; Beskok, A.; Aluru, N., Micro flows: fundamentals and simulation, Springer-verlag, (2001)
[12] Ho, C.M.; Tai, Y.C., Micro-electro-mechanical-systems (MEMS) and fluid flows, Ann. rev. fluid mech., 30, 579, (1998)
[13] Abe, T., Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. comput. phys., 131, 241, (1997) · Zbl 0877.76062
[14] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. rev. E, 56, 6811-6817, (1997)
[15] Shan, X.; He, X., Discretization of the velocity space in the solution of the Boltzmann equation, Phys. rev. lett., 80, 65, (1998)
[16] Shan, X.; Yuan, X.-F.; Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. fluid mech., 550, 413, 413-441, (2006) · Zbl 1097.76061
[17] Grad, H., On the kinetic theory of rarefied gases, Commun. pure appl. math., 2, 4, 331-407, (1949) · Zbl 0037.13104
[18] Lutsko, J.F., Approximate solution of the Enskog equation far from equilibrium, Phys. rev. lett., 78, 243, (1997)
[19] Uehling, E.A.; Uhlenbeck, G.E., Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I, Phys. rev., 43, 552, (1933) · Zbl 0006.33404
[20] Lundstrom, M., Fundamentals of carrier transport, (2000), Cambridge University Press
[21] Yang, J.Y.; Shi, Y.H., A kinetic beam scheme for ideal quantum gas dynamics, Proc. roy. soc. A, 462, 1553-1572, (2006) · Zbl 1149.82341
[22] Yang, J.Y.; Hsieh, T.Y., A kinetic flux vector splitting scheme for ideal quantum gas dynamics, SIAM J. sci. comput., 66, 1552, (2007)
[23] Shi, Y.H.; Yang, J.Y., A gas-kinetic BGK scheme for semiclassical Boltzmann hydrodynamic transport, J. comput. phys., 227, 22, (2008) · Zbl 1231.82056
[24] Yang, J.Y.; Hung, L.H., Lattice uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases, Phys. rev. E, 79, 056708, (2009)
[25] Ansumali, S.; Karlin, I.V., Kinetic boundary conditions in the lattice Boltzmann method, Phys. rev. E, 66, 026311, (2002)
[26] Succi, S., Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Phys. rev. lett., 89, 064502, (2002)
[27] Sbragaglia, M.; Succi, S., Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Phys. fluids, 17, 093602, (2005) · Zbl 1187.76469
[28] Toschi, F.; Succi, S., Lattice Boltzmann method at finite Knudsen numbers, Europhys. lett., 69, 4, (2005)
[29] Lim, C.Y.; Shu, C.; Niu, X.D.; Chew, Y.T., Application of lattice Boltzmann method to simulate microchannel flows, Phys. fluids, 14, 2299, (2002) · Zbl 1185.76227
[30] Kardar, M., Statistical physics of particles, (2007), Cambridge University Press · Zbl 1148.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.