×

Complexities in modeling of heterogeneous catalytic reactions. (English) Zbl 1339.92104

Summary: Catalysts are omnipresent in the chemical industry. Understanding of catalytic chemical reactions is crucial for a rational development of catalysts. The present paper describes approaches for simulating phenomena in heterogeneous catalysis on a molecular level. Modeling of porous structures and their fractal surfaces will be presented. Simulation of adsorption and diffusion of reactants and products inside the pores by means of various Monte Carlo and molecular dynamics algorithms is described, followed by quantum chemical methods for calculating reactions on the active centers. Optimization of pore structures and multiscaling procedures complete the picture.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bartholomew, C. H.; Farrauto, R. J., Fundamentals of industrial catalytic processes, (2005), Wiley-AIChE New York
[2] Somorjai, G. A.; Li, Y. M., Introduction to surface chemistry and catalysis, (2010), Wiley & Sons New York
[3] Ertl, G., Reactions at solid surfaces, (2009), Wiley & Sons New York
[4] Woodruff, D. P.; Delchar, T. A., Modern techniques of surface science, (1994), Cambridge University Press Cambridge
[5] Niemantsverdriet, J., Spectroscopy in catalysis: an introduction, (2000), Wiley & Sons New York
[6] Campbell, C. T., Studies of model catalysts with well-defined surfaces combining ultrahigh-vacuum surface characterization with medium-pressure and high-pressure kinetics, Adv. Catal., 36, 1-54, (1989)
[7] (van Santen, R. A.; Sautet, P., Computational Methods in Catalysis and Materials Science, (2009), Wiley-VCH Weinheim)
[8] (Deutschmann, O., Modeling and Simulation of Heterogeneous Catalytic Reactions, (2011), Wiley-VCH Weinheim)
[9] Helgaker, T.; Jørgensen, P.; Olsen, J., Molecular electronic structure theory, (2002), Wiley & Sons New York
[10] Martin, R., Electronic structure—basic theory and practical methods, (2004), Cambridge University Press Cambridge · Zbl 1152.74303
[11] Kohanoff, J., Electronic structure calculations for solids and molecules, (2006), Cambridge University Press Cambridge · Zbl 1113.81006
[12] Engel, E.; Dreizler, R. M., Density functional theory: an advanced course, (2011), Springer Heidelberg · Zbl 1216.81004
[13] Koch, W.; Holthausen, M. C., A chemist’s guide to density functional theory, (2001), Wiley-VCH Weinheim
[14] Sholl, D., Density functional theory: A practical introduction, (2009), Wiley-Interscience New York
[15] van Barth, U., Basic density functional theory—an overview, Phys. Scr. T, 109, 9-39, (2004)
[16] Groß, A., Theoretical surface science: A microscopic perspective, (2003), Springer Heidelberg
[17] Frenkel, D.; Smit, B., Understanding molecular simulation, (2001), Academic Press San Diego
[18] Binder, K.; Heermann, D. W., Monte Carlo simulation in statistical physics: an introduction, (2010), Springer · Zbl 1197.82067
[19] Newman, M. E.J.; Barkema, G. T., Monte Carlo methods in statistical physics, (1999), Oxford University Press Oxford · Zbl 1012.82019
[20] Rapaport, D. C., The art of molecular dynamics simulation, (2004), Cambridge University Press Cambridge · Zbl 1098.81009
[21] Allen, M. P.; Tildesley, D. J., Computer simulation of liquids, (1989), Oxford University Press Oxford · Zbl 0703.68099
[22] Griebel, M.; Knapek, S.; Zumbusch, G., Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications, (2009), Springer Heidelberg · Zbl 1131.76001
[23] Tuckerman, M. E., Statistical mechanics: theory and molecular simulation, (2010), Oxford University Press Oxford · Zbl 1232.82002
[24] Thijssen, J. M., Computational physics, (1999), Cambridge University Press Cambridge · Zbl 1145.81302
[25] Schatz, G. C.; Ratner, M. A., Quantum mechanics in chemistry, (2002), Dover Publications New York
[26] Szabo, A.; Ostlund, N. S., Modern quantum chemistry: introduction to advanced electronic structure theory, (1989), Dover Publications New York
[27] Piela, L., Ideas of quantum chemistry, (2007), Elsevier Amsterdam
[28] Levine, I. N., Quantum chemistry, (2009), Pearson-Prentice Hall London
[29] McQuarrie, D. Al., Statistical mechanics, (2000), University Science Books Sausolito
[30] Hill, T. L., An introduction to statistical mechanics, (1987), Dover Publications Mineola, New York
[31] Chandler, D., Introduction to modern statistical mechanics, (1987), Oxford University Press Oxford
[32] Ebeling, W.; Sokolov, I. M., Statistical thermodynamics and stochastic theory of nonequilibrium systems, (2005), World Scientific Singapore · Zbl 1142.82001
[33] Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J., Current status of transition-state theory, J. Phys. Chem., 100, 12771-12800, (1996)
[34] Hänggi, P.; Talkner, P.; Borkovec, M., Reaction rate theory: fifty years after Kramers, Rev. Modern Phys., 62, 251-341, (1990)
[35] Karplus, M.; Porter, R. N.; Sharma, R. D., Exchange reactions with activation energy. I. simple barrier potential, J. Chem. Phys., 43, 3259-3287, (1965)
[36] Porter, R. N.; Raff, L. M.; Miller, W. H., Quasiclassical selection of initial coordinates and momenta for rotating Morse oscillator, J. Chem. Phys., 63, 2214-2218, (1975)
[37] Car, R.; Parinello, M., Unified approach to molecular dynamics and density-functional theory, Phys. Rev. Lett., 55, 2471-2474, (1985)
[38] Marx, D.; Hutter, J., Ab initio molecular dynamics: basic theory and advanced methods, (2012), Cambridge University Press Cambridge
[39] Chung, T. J., Computational fluid dynamics, (2010), Cambridge University Press Cambridge · Zbl 1218.76001
[40] Froment, G.; Bischoff, K. B.; De Wilde, J., Chemical reactor analysis and design, (2010), Wiley & Sons New York
[41] Database issued by the international zeolite association (IZA-SC): www.iza-structure.org/databases.
[42] Baerlocher, Ch.; McCusker, L. B.; Olson, D. H., Atlas of zeolite framework types, (2007), Elsevier Amsterdam
[43] (Čejka, J.; Corma, A.; Zones, S., Zeolites and Catalysis: Synthesis, Reactions and Applications, Vol. 2, (2010), Wiley-VCH Weinheim)
[44] Franchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keefe, M.; Yagi, O. M., Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1257-1283, (2009)
[45] (Čejka, J., Metal-Organic Frameworks—Applications from Catalysis to Gas Storage, (2011), Wiley-VCH Weinheim)
[46] Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S.t.; Hupp, J. T., Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459, (2009)
[47] Düren, T.; Bae, Y.-S.; Snurr, R. Q., Using molecular simulation to characterise metal-organic frameworks for adsorption applications, Chem. Soc. Rev., 38, 1237-1247, (2009)
[48] Wheeler, A., Reaction rates and selectivity in catalyst pores, Adv. Catal., 3, 249-327, (1951)
[49] Johnson, M. F.L.; Stewart, W. E., Pore structure and gaseous diffusion in solid catalysts, J. Catal., 4, 248-252, (1965)
[50] Beeckman, J. W.; Froment, G. F., Catalyst deactivation by site coverage and pore blockage. finite rate of growth of the carbonaceous deposit, Chem. Eng. Sci., 35, 805-812, (1980)
[51] Reyes, S.; Jensen, K. F., Estimation of effective transport coefficients in porous solids based on percolation concepts, Chem. Eng. Sci., 40, 1723-1734, (1985)
[52] Bethe, H. A., Statistical theory of superlattices, Proc. R. Soc. Lond. Ser. A, 150, 552-575, (1935) · Zbl 0012.04501
[53] Voronoi, G., Novel applications of continuous parameters on the theory of quadratic forms, J. Reine Angew. Math., 134, 198-287, (1908) · JFM 39.0274.01
[54] Okabe, A.; Boots, B.; Sugihara, K., Spatial tessellations: concepts and applications of Voronoi diagrams, (1992), Wiley &Sons New York · Zbl 0877.52010
[55] F.J. Keil, Modeling reactions in porous media in [8], pp. 149-186.
[56] Stauffer, D.; Aharoni, A., Introduction to percolation theory, (1992), Taylor & Francis London
[57] Rieckmann, C.; Düren, T.; Keil, F. J., Interaction of diffusion, reaction and geometric structure of pore networks in catalyst supports—a percolation theoretical approach to hydrodemetallation, Hung. J. Ind. Chem., 25, 137-145, (1997)
[58] Keil, F. J.; Rieckmann, C., Optimization of three-dimensional catalyst pore structures, Chem. Eng. Sci., 49, 4811-4822, (1994)
[59] Jerauld, G. R.; Hatfield, J. C.; Scriven, L. E.; Davis, H. T., Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder, J. Phys. C, 17, 1519-1529, (1984)
[60] Jerauld, G. R.; Scriven, L. E.; Davis, H. T., Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder, J. Phys. C, 17, 3429-3439, (1984)
[61] Winterfeld, P. H.; Scriven, L. E.; Davis, H. T., Percolation and conductivity of random two-dimensional composites, J. Phys. Chem., 14, 2361-2376, (1981)
[62] Gregg, S. J.; Sing, K. S., Adsorption, surface area and porosity, (1982), Academic Press London
[63] Thomas, J. M.; Thomas, W. J., Principles and practice of heterogeneous catalysis, (1996), Wiley-VCH Weinheim
[64] Conner, W. C.; Christensen, S.; Topsoe, H.; Ferrero, M.; Pullen, A., The estimation of pore-network dimensions and structure: analysis of sorption and comparison with porosimetry, Stud. Surf. Sci. Catal., 87, 151-163, (1994)
[65] Groen, J. C.; Peffer, L. A.A.; Pérez-Ramirez, J., Pore size determination in modified micro- and macroporous materials. pitfalls and limitations in gas adsorption data analysis, Microporous and Mesoporous Mater., 60, 1-17, (2003)
[66] Ross, J. R.H., Heterogeneous catalysis—fundamentals and applications, (2011), Elsevier Amsterdam
[67] Seaton, N. A., Determination of the connectivity of porous solids from nitrogen sorption measurements, Chem. Eng. Sci., 46, 1895-1909, (1991)
[68] Liu, H.; Zhang, L.; Seaton, N. A., Determination of the connectivity of porous solids from nitrogen sorption measurements: II. generalisation, Chem. Eng. Sci., 47, 4393-4404, (1992)
[69] Naumov, S.; Valiullin, R.; Kärger, J.; Pithcumani, R.; Coppens, M.-O., Tracing pore connectivity and architecture in nanostructured silica SBA-15, Microporous Mesoporous Mater., 110, 37-40, (2008)
[70] Calo, J. M.; Hall, P. J., The application of small angle scattering techniques to porosity characterization in carbons, Carbon, 42, 1299-1304, (2004)
[71] Mandelbrot, B. B., The fractal geometry of nature, (1982), Freeman San Francisco · Zbl 0504.28001
[72] Takayasu, H., Fractals in the physical sciences, (1990), Manchester University Press Manchester · Zbl 0689.58001
[73] Barnsley, M., Fractals everywhere, (1988), Academic Press San Diego · Zbl 0691.58001
[74] (Avnir, D., The Fractal Approach to Heterogeneous Chemistry, (1992), John Wiley New York)
[75] Ackermann, W.-G.; Spindler, H., Die fraktale dimension als katalysatorkenngröße—I. eine mathematische einführung, Z. Phys. Chem. (Leipzig), 269, 1000, (1988)
[76] Farin, D.; Avnir, D., The reaction dimension in catalysis on dispersed metals, J. Am. Chem. Soc., 110, 2039-2045, (1988)
[77] (Avnir, D., The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, (1989), Wiley Chichester)
[78] Russ, J. C., Fractal surfaces, (1994), Plenum Press New York
[79] Gutfraind, R.; Sheintuch, M.; Avnir, D., Fractal and multifractal analysis of the sensitivity of catalytic reactions to catalyst structure, J. Chem. Phys., 95, 6100-6111, (1991)
[80] Kopelman, R., Fractal reaction kinetics, Science, 241, 1620-1626, (1988)
[81] Koppens, M.-O., The effect of fractal surface roughness on diffusion and reaction in porous catalysts: from fundamentals to practical applications, Catal. Today, 53, 225-243, (1999)
[82] Guo, X.-Y.; Keil, F. J., Kinetics of N_{2}O catalytic decomposition over three-dimensional fractals, Chem. Phys. Lett., 330, 410-416, (2000)
[83] Chorkendorff, I.; Niemantsverdriet, J. W., Concepts of modern catalysis and kinetics, (2003), Wiley-VCH
[84] Grimmett, G., Percolation, (2010), Springer Heidelberg · Zbl 0926.60004
[85] Sahimi, M., Applications of percolation theory, (1994), Taylor & Francis London
[86] Hoshen, J.; Kopelman, R., Percolation and cluster distribution. I. cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B, 14, 3438-3445, (1976)
[87] Do, D. D., Adsorption analysis: equilibria and kinetics, (1998), Imperial College Press London
[88] Langmuir, I., The constitution and fundamental properties of solids and liquids, part I. solids, J. Am. Chem. Soc., 38, 2221-2295, (1916)
[89] Adamson, A. W.; Gast, A. P., Physical chemistry of surfaces, (1997), Wiley New York
[90] Davis, H. T., Statistical mechanics of phases, interfaces and thin films, (1996), Wiley-VCH Weinheim
[91] Steele, W., The interaction of gases with surfaces, (1974), Pergamon New York
[92] Rudzinski, W.; Everett, D. H., Adsorption of gases on heterogeneous solids, (1992), Academic Press London
[93] Norman, G. E.; Filinov, V. S., Investigations of phase transitions by a Monte Carlo method, High Temp. (USSR), 7, 216-222, (1969)
[94] Widom, B., Topics in the theory of fluids, J. Chem. Phys., 39, 2808-2812, (1963)
[95] Siepmann, J. I., A method for the direct calculation of chemical potentials for dense chain systems, Mol. Phys., 70, 1145-1158, (1990)
[96] Siepmann, J. I.; Frenkel, D., Configurational bias Monte Carlo: a new sampling scheme for flexible chains, Mol. Phys., 75, 59-70, (1992)
[97] Vlugt, T.; Martin, M.; Smit, B.; Siepmann, J.; Krishna, R., Improving the efficiency of the configurational-bias Monte Carlo algorithm, Mol. Phys., 94, 727-733, (1998)
[98] Rosenbluth, M. N.; Rosenbluth, A. W., Monte Carlo calculation of the average extension of molecular chains, J. Chem. Phys., 23, 356-359, (1955)
[99] Frenkel, D.; Mooij, G.; Smit, B., Novel scheme to study structural and thermal properties of continuously deformable molecules, J. Phys.: Condens. Matter, 4, 3053-3076, (1992)
[100] Smit, B.; Maesen, T. L.M., Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity, Chem. Rev., 108, 4125-4184, (2008)
[101] Keil, F. J., Molecular simulation of adsorption in zeolites and carbon nanotubes, (Dunne, L. J.; Manos, G., Adsorption and Phase Behaviour in Nanochannels and Nanotubes, (2010), Springer Heidelberg), 9-40
[102] Leach, A. R., Molecular modeling—principles and applications, (2001), Prentice Hall New York
[103] Dubbeldam, D.; Calero, S.; Vlugt, T. J.H.; Krishna, R.; Maesen, T.; Smit, B., United atom force field for alkanes in nanoporous materials, J. Phys. Chem. B, 108, 12301-12313, (2004)
[104] Sun, M. S.; Shah, D.; Xu, H.; Talu, O., Adsorption equilibria of C_{1} to C_{4} alkanes, CO_{2} and SF_{6}, J. Phys. Chem. B, 102, 1466-1473, (1998)
[105] L. Eder, Thermodynamic siting of alkane adsorption in molecular sieves, Ph.D.-Thesis, University of Twente, 1996.
[106] Smit, B.; Maesen, T. L., Commensurate freezing of alkanes in the channels of a zeolite, Nature, 374, 42-44, (1995)
[107] Myers, A. L.; Prausnitz, J. M., Thermodynamics of mixed-gas adsorption, AIChE J., 11, 121-127, (1965)
[108] Jakobtorweihen, S.; Hansen, N.; Keil, F. J., Molecular simulation of alkene adsorption in zeolites, Mol. Phys., 103, 471-489, (2005)
[109] Heyden, A.; Düren, T.; Keil, F. J., Study of molecular shape and non-ideality effects on mixture adsorption isotherms of small molecules in carbon nanotubes: a Monte Carlo simulation, Chem. Eng. Sci., 57, 2439-2448, (2002)
[110] Crespos, C.; Busnengo, H. F.; Dong, W.; Salin, A., Analysis of H_{2} dissociation dynamics on the pd(111) surface, J. Chem. Phys., 114, 10954-10963, (2001)
[111] Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; Salmeron, M., Hydrogen adsorption and diffusion on pd(111), Surf. Sci., 540, 5-11, (2003)
[112] Lopez, N.; Lodziana, Z.; Illas, F.; Salmeron, M., When Langmuir is too simple: H_{2} dissociation on pd(111) at high coverage, Phys. Rev. Lett., 93, (2004), Paper 146103
[113] Groß, A., Ab initio molecular dynamics study of hot atom dynamics after dissociative adsorption of H_{2} on pd(100), Phys. Rev. Lett., 103, (2009), Paper 246101
[114] Knudsen, M., The kinetic theory of gases, (1934), Methuen Londen · JFM 60.1420.10
[115] Argönül, A.; Keil, F. J., An alternative procedure for modeling of Knudsen flow and surface diffusion, Period. Polytech., 52, 37-55, (2008)
[116] Jakobtorweihen, S.; Lowe, C. P.; Keil, F. J.; Smit, B., Diffusion of chain molecules and mixtures in carbon nanotubes: the effect of host lattice flexibility and theory of diffusion in the Knudsen regime, J. Chem. Phys., 127, (2007), Paper 024904
[117] Steckelmacher, W., Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems, Rep. Progr. Phys., 49, 1083-1107, (1986)
[118] Maxwell, J. C., Illustrations of the dynamical theory of gases, Phil. Mag., 19, 19-32, (1860)
[119] Boltzmann, L., Vorlesungen über gastheorie, (1896-1898), Ambrosius Barth Leipzig, Reprint: Lectures on Gas Theory, Dover Publ., New York, 1995
[120] Poling, B.; Prausnitz, J. M.; O’Connell, J. P., The properties of gases and liquids, (2001), McGraw-Hill New York
[121] Krishna, R.; van Baten, J. M., Investigating the validity of the bosanquet formula for estimation of diffusivities in mesopores, Chem. Eng. Sci., 69, 684-688, (2012)
[122] Doll, J. D.; Voter, A. F., Recent developments in the theory of surface diffusion, Annu. Rev. Phys. Chem., 38, 413-431, (1987)
[123] Kapoor, A.; Yang, R. T.; Wong, C., Surface diffusion, Catal. Rev.-Sci. Eng., 31, 129-214, (1989)
[124] Krishna, R., Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell-Stefan equations, Chem. Eng. Sci., 45, 1779-1791, (1990)
[125] Taylor, R.; Krishna, R., Multicomponent mass transfer, (1993), Wiley New York
[126] Mason, E. A.; Malinauskas, A. P., Gas transport in porous media: the dusty-gas model, (1983), Elsevier Amsterdam
[127] Chapman, S.; Cowling, T. G., The mathematical theory of non-uniform gases, (1970), Cambridge University Press Cambridge · Zbl 0098.39702
[128] Kerkhof, P. J.A. M., A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model, Chem. Eng. J., 64, 319-343, (1996)
[129] Kerkhof, P. J.A. M.; Geboers, M. A.M., Toward a unified theory of isotropic molecular transport phenomena, AIChE J., 51, 79-121, (2005)
[130] Young, J. B.; Todd, B., Modelling of multicomponent gas flows in capillaries and porous solids, Int. J. Heat Mass Transfer, 48, 5338-5353, (2005) · Zbl 1188.76267
[131] Rieckmann, C.; Keil, F. J., Multicomponent diffusion and reaction in three-dimensional networks: general kinetics, Ind. Eng. Chem. Res., 36, 3275-3281, (1997)
[132] Hoyer, W.; Schmidt, J. W., Newton-type decomposition methods for equations arising in network analysis, Z. Angew. Math. Mech., 63, 397-405, (1984) · Zbl 0567.65028
[133] Schmidt, J. W.; Hoyer, W.; Haufe, Ch., Consistent approximation in Newton-type decomposition methods, Numer. Math., 47, 413-425, (1985) · Zbl 0548.65034
[134] Duff, I. S., Direct methods for solving sparse systems of linear equations, SIAM J. Sci. Comput., 5, 605-619, (1982) · Zbl 0557.65016
[135] Keipert, O. P.; Baerns, M., Determination of the intra crystalline diffusion coefficients of alkanes in H-ZSM-5 zeolite by transient technique using the temporal-analysis-of-products (TAP) reactor, Chem. Eng. Sci., 53, 3623-3634, (1998)
[136] Delgado, J. A.; Nijhuis, T. A.; Kapteijn, F.; Moulijn, J. A., Modeling of fast pulse responses in multitrack; an advanced TAP reactor, Chem. Eng. Sci., 57, 1835-1847, (2002)
[137] Nijhuis, T. A.; van den Broeke, L. J.P.; Linders, J. J.G.; Makkee, M.; Kapteijn, F.; Moulijn, J. A., Modeling of the transient sorption and diffusion processes in microporous materials at low pressure, Catal. Today, 53, 189-205, (1999)
[138] Tuckerman, M. E.; Martyna, G. J., Understanding modern molecular dynamics: techniques and applications, J. Phys. Chem. B, 104, 159-178, (2000)
[139] Tuckerman, M. E.; Yarne, D. A.; Samuelson, S. O.; Hughes, A. L.; Martyna, G. H., Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers, Comput. Phys. Comm., 128, 333-376, (2000) · Zbl 1002.81056
[140] Leimkuhler, B.; Reich, S., Simulating Hamiltonian mechanics, (2005), Cambridge University Press Cambridge
[141] Hairer, E.; Lubick, C.; Wanner, G., Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, (2006), Springer
[142] Hassani, S., Mathematical physics, (1999), Springer Heidelberg
[143] Berendsen, H. J.C., Simulating the physical world-hierarchical modeling from quantum mechanics to fluid dynamics, (2007), Cambridge University Press Cambridge · Zbl 1134.00009
[144] Keil, F. J., Multiscale modelling in computational heterogeneous catalysis, Top. Curr. Chem., 307, 69-108, (2012)
[145] Nielson, K. D.; van Duin, A. C.T.; Oxgaard, J.; Deng, W.-Q.; Goddard, W. A., Development of the reax FF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes, J. Phys. Chem. A, 109, 493-499, (2005)
[146] Pauling, L., Atomic radii and interatomic distances in metals, J. Am. Chem. Soc., 69, 542-553, (1947)
[147] Bezus, A. G.; Kiselev, A. V.; Lopathin, A. A.; Du, P. Q.J., Molecular statistical calculation of thermodynamic adsorption characteristics using atom-atom approximation. 1. adsorption of methane by zeolite nax, J. Chem. Soc. Faraday Trans. II, 74, 367-379, (1978)
[148] Demontis, P.; Suffritti, G., Structure and dynamics of zeolites investigated by molecular dynamics, Chem. Rev., 97, 2845-2878, (1997)
[149] Zimmermann, N. E.R.; Jakobtorweihen, S.; Beerdsen, E.; Smit, B., In-depth study of the influence of host-framework flexibility on the diffusion of small gas molecules in one-dimensional zeolitic pore systems, J. Phys. Chem. C, 111, 17370-17381, (2007)
[150] Bolhuis, P. G.; Dellago, C., Trajectory-based rare event simulations, (Lipkowitz, K. B.; Boyd, D. B., Reviews in Computational Chemistry, Vol. 27, (2011), Wiley New York)
[151] Fichthorn, K. A.; Weinberg, W. H., Theoretical foundations of dynamical Monte Carlo simulations, J. Chem. Phys., 95, 1090-1096, (1991)
[152] K. Reuter, First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: concepts, status, and frontiers in [8], pp. 71-111.
[153] Reed, D. A.; Ehrlich, G., Surface diffusivity and the time correlation of concentration fluctuations, Surf. Sci., 105, 603-628, (1981)
[154] Keil, F. J.; Krishna, R.; Coppens, M.-O., Modeling of diffusion in zeolites, Rev. Chem. Eng., 16, 71-197, (2000)
[155] Dubbeldam, D.; Snurr, R. Q., Recent developments in the molecular modeling of diffusion in nanoporous materials, Mol. Simul., 33, 305-325, (2007) · Zbl 1116.76077
[156] Kärger, J.; Ruthven, D., Diffusion in zeolites and other microporous solids, (1992), Wiley New York
[157] Kärger, J.; Ruthven, D. M.; Theodorou, D. N., Diffusion in nanoporous materials, vol. 2, (2012), Wiley-VCH Weinheim
[158] Krishna, R., Diffusion in porous crystalline materials, Chem. Soc. Rev., 41, 3099-3118, (2012)
[159] Sholl, D. S., Understanding macroscopic diffusion of adsorbed molecules in crystalline nanoporous materials via atomistic simulations, Acc. Chem. Res., 39, 403-411, (2006)
[160] Skoulidas, A. I.; Sholl, D. S., Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity, J. Phys. Chem. A, 107, 10132-10141, (2003)
[161] Beerdsen, E.; Dubbeldam, D.; Smit, B., Understanding diffusion in nanoporous materials, Phys. Rev. Lett., 96, (2006), Paper 044501
[162] Beerdsen, E.; Dubbeldam, D.; Smit, B., Loading dependence of the diffusion coefficient of methane in nanoporous materials, J. Phys. Chem. B, 110, 22754-22772, (2006)
[163] Dubbeldam, D.; Beerdsen, E.; Vlugt, T. J.H.; Smit, B., Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory, J. Chem. Phys., 122, (2005)
[164] Hammer, B.; Nørskov, J. K., Electronic factors determining the reactivity of metal surfaces, Surf. Sci., 343, 211-220, (1995)
[165] Boudart, M., Catalysis by supported metals, Adv. Catal., 20, 153-166, (1969)
[166] Pease, R. N.; Stewart, L., The catalytic combination of ethylene and hydrogen in the presence of metallic copper. III carbon monoxide as a catalyst poison, J. Am. Chem. Soc., 47, 1235-1240, (1925)
[167] Boudart, M.; Delboville, A.; Dumesic, J. A.; Khammouma, S.; Topsoe, H., Surface, catalytic and magnetic properties of small iron particles: I. preparation and characterization of samples, J. Catal., 37, 486-502, (1975)
[168] Fogler, H. S., Elements of chemical reaction engineering, (2005), Prentice Hall New York
[169] Nørskov, J. K.; Bligaard, T.; Hvolbaek, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C. H., The nature of the active site in heterogeneous metal catalysis, Chem. Soc. Rev., 37, 2163-2171, (2008)
[170] Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J., The brønsted-Evans-polanyi relation and the volcano curve in heterogeneous catalysis, J. Catal., 224, 206-217, (2004)
[171] Dietrich, H.; Geng, P.; Jacobi, K.; Ertl, G., Sticking coefficient for dissociative adsorption of N_{2} on ru single-crystal surfaces, J. Chem. Phys., 104, 375-380, (1996)
[172] Gao, F.; Goodman, D. W., Model catalysts: simulating the complexities of heterogeneous catalysts, Annu. Rev. Phys. Chem., 63, 265-286, (2012)
[173] (Mezaki, R.; Inoue, H., Rate Equations of Solid-Catalyzed Reactions, (1991), University of Tokyo Press Tokyo)
[174] Ostrovskii, V. E., Paradox of heterogeneous catalysis: paradox or regularity?, Ind. Eng. Chem. Res., 43, 3113-3126, (2004)
[175] Ternel, B.; Meskine, H.; Reuter, K.; Scheffler, M.; Metiu, H., Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?, J. Chem. Phys., 126, (2007), Paper 204711
[176] Dumesic, J. A.; Rudd, D. F.; Aparicio, L. M.; Rekoske, J. E.; Treviño, A. A., The microkinetics of heterogeneous catalysis, (1993), American Chemical Society Washington
[177] Stoltze, P., Microkinetic simulation of catalytic reactions, Prog. Surf. Sci., 65, 65-150, (2000)
[178] Saad, Y.; Chelikousky, J. R.; Shontz, S. M., Numerical methods for electronic structure calculations of materials, SIAM Rev., 52, 3-54, (2010) · Zbl 1185.82004
[179] Wang, L.-W., Novel computational methods for nanostructure electronic structure calculations, Annu. Rev. Phys. Chem., 61, 19-39, (2010)
[180] Huang, P.; Carter, E. A., Advances in correlated electronic structure methods for solids, surfaces, and nanostructures, Annu. Rev. Phys. Chem., 59, 261-290, (2008)
[181] Hafner, J., Ab-initio simulations of materials using VASP: density-functional theory and beyond, J. Comput. Chem., 29, 2044-2078, (2008)
[182] Kummel, S.; Kronik, L., Orbital-dependent density functionals: theory and applications, Rev. Modern Phys., 80, 3-60, (2008) · Zbl 1205.81153
[183] Nachtigall, P.; Sauer, J., Applications of quantum chemical methods in zeolite science, Stud. Surf. Sci. Catal., 168, 701-736, (2007)
[184] Pyykkö, P., Relativistic effects in chemistry: more common than you thought, Annu. Rev. Phys. Chem., 63, 45-64, (2012)
[185] Autschbach, J., Perspective: relativistic effects, J. Chem. Phys., 136, (2012), Paper 150902
[186] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys. Rev. B, 136, 864-871, (1964)
[187] Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 140, 1133-1138, (1965)
[188] Janak, J. F., Proof that \(\partial e / \partial n_i = \varepsilon_i\) in density functional theory, Phys. Rev. B, 18, 7165-7168, (1978)
[189] Cohen, A. J.; Mori-Sánchez, P.; Yang, W., Challenges for density functional theory, Chem. Rev., 112, 289-320, (2012)
[190] Rudenko, A.; Keil, F. J.; Katsnelson, M. I.; Lichtenstein, A. I., Adsorption of cobalt on graphene: electron correlation effects from a quantum chemical perspective, Phys. Rev. B, 86, (2012), Paper 075422
[191] Goerigk, L.; Grimme, S., Accurate dispersion-corrected density functionals for general chemistry applications, (Comba, P., Modeling of Molecular Properties, (2011), Wiley-VCH Weinheim), 3-16
[192] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Modern Phys., 64, 1045-1097, (1992)
[193] Henkelman, G.; Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 113, 9978-9985, (2000)
[194] E, W.; Ren, W.; Vanden Eijnden, E., String method for the study of rare events, Phys. Rev. B, 66, (2002), Paper 052301 · Zbl 1050.60068
[195] Peters, B.; Heyden, A.; Bell, A. T.; Chakraborty, A., A growing string method for determining transition states: comparison to the nudged elastic band and string methods, J. Chem. Phys., 120, 7877-7886, (2004)
[196] Baker, J., An algorithm for the location of transition states, J. Comput. Chem., 7, 385-395, (1986)
[197] Henkelman, G.; Jónsson, H., A dimer method for finding saddle points on high-dimensional potential surfaces using only first derivatives, J. Chem. Phys., 111, 7010-7022, (1999)
[198] Heyden, A.; Bell, A. T.; Keil, F. J., Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method, J. Chem. Phys., 123, (2005), Paper 224101
[199] Boudart, M.; Mariadassou, G. D., Kinetics of heterogeneous catalytic reactions, (1984), Princeton University Press Princeton
[200] Houston, P. L., Chemical kinetics and reaction dynamics, (2006), Dover Publ. New York
[201] Steinfeld, J. I., Chemical kinetics and dynamics, (1998), Prentice Hall Upper Saddle River, NJ
[202] Marin, G. B.; Yablonsky, G. S., Kinetics of chemical reactions, (2011), Wiley-VCH Weinheim
[203] Masel, R. I., Chemical kinetics & catalysis, (2001), Wiley-Interscience New York
[204] Laidler, K. J., Chemical kinetics, (1987), Harper & Row Publ. Cambridge
[205] Arnaut, L.; Formosinho, S.; Burrows, H., Chemical kinetics—from molecular structure to chemical reactivity, (2007), Elsevier Amsterdam
[206] Murzin, D.; Salmo, T., Catalytic kinetics, (2005), Elsevier Amsterdam
[207] Helfferich, F. G., (Green, N. J.B., Kinetics of Multistep Reactions, Chemical Kinetics, vol. 40, (2004), Elsevier Amsterdam), 1-488
[208] Bucko, T.; Hafner, J., Entropy effects in hydrocarbon conversion reactions: free energy integrations and transition path sampling, J. Phys.: Condens. Matter, 22, (2010), Paper 384201
[209] Pratt, L. R., A statistical method for identifying transition states in high dimensional problems, J. Chem. Phys., 85, 5045-5048, (1986)
[210] Bolhuis, P. G.; Dellago, C., Trajectory-based rare event simulations, (Lipkowitz, K. B.; Boyd, D. B., Reviews in Computational Chemistry, Vol. 27, (2011), Wiley New York), 111-210
[211] E, W.; Vanden-Eijnden, E., Transition-path theory and path-finding algorithms for the study of rare events, Annu. Rev. Phys. Chem., 61, 391-420, (2010)
[212] Broadbelt, L. J.; Snurr, R. Q., Applications of molecular modeling in heterogeneous catalysis research, Appl. Catal. A, 200, 23-46, (2000)
[213] Wang, G.; Coppens, M.-O.; Kleijn, C. R., A tailored strategy for PDE-based design of hierarchically structured porous catalysts, Int. J. Multiscale Comput. Eng., 6, 179-190, (2008)
[214] Raimondeau, S.; Vlachos, D. G., Recent developments on multiscale, hierarchical modelling of chemical reactors, Chem. Eng. J., 90, 3-23, (2002)
[215] Vlachos, D. G., A review of multiscale analysis: examples from systems biology, materials engineering, and other fluid-surface interacting systems, Adv. Chem. Eng., 30, 1-61, (2005)
[216] Salciccioli, M.; Stamatakis, M.; Caratzoulas, S.; Vlachos, D. G., A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior, Chem. Eng. Sci., 66, 4319-4355, (2011)
[217] Chung, P. S.; Jhon, M. S.; Biegler, L. T., The holistic strategy in multi-scale modeling, (Marin, G. B., Advances in Chemical Engineering, Vol. 40, (2011), Elsevier Amsterdam), 59-118
[218] Hansen, N.; Keil, F. J., Multiscale modeling of reaction and diffusion in zeolites: from the molecular level to the reactor, Soft Mater., 10, 179-201, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.