×

Lift force on nanoparticles in shear flows of dilute gases: negative or positive? (English) Zbl 1359.76249

Summary: We theoretically investigate the lift force on spherical nanoparticles in a shear flow of a dilute gas, wherein the non-rigid-body collision between the particle and the gas molecules is considered. The analytical formula of the lift force is derived based on the gas kinetic theory. In the limit of rigid-body collision, the formula is consistent with the theoretical results in the literature [N. Liu and D. B. Bogy, Phys. Fluids 20, No. 10, Paper No. 107102, 5 p. (2008; Zbl 1182.76465)], which predicts that the lift force is in the opposite direction to the fluid velocity gradient (negative lift force). However, by taking into account gas-particle intermolecular interactions, the direction of the lift force on the nanoparticle is found to be dependent on temperature, i.e. both positive and negative lift forces exist in a certain temperature range. An explanation for the direction change of the lift force is given based on the analysis of the scattering angle under non-rigid-body particle-molecule collisions.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics

Citations:

Zbl 1182.76465
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Asmolov, E. S., The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number, J. Fluid Mech., 381, 63-87, (1999) · Zbl 0935.76025
[2] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, (1994), Clarendon
[3] Bretherton, F. P., The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech., 14, 284-304, (1962) · Zbl 0109.43605
[4] Busnaina, A.; Taylor, J.; Kashkoush, I., Measurement of the adhesion and removal forces of submicrometer particles on silicon substrates, J. Adhes. Sci. Technol., 7, 5, 441-455, (1993)
[5] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, (1970), Cambridge University Press · JFM 65.1541.01
[6] Chen, X.; Xu, D. Y., Thermophoresis of a near-wall particle at great Knudsen numbers, J. Aerosol Sci., 36, 39-47, (2002)
[7] Cherukat, P.; Mclaughlin, J. B., The inertial lift on a rigid sphere in a linear shear flow field near a flat wall, J. Fluid Mech., 263, 1-18, (1994) · Zbl 0804.76029
[8] Dandy, D. S.; Dwyer, H. A., A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer, J. Fluid Mech., 216, 381-410, (1990)
[9] Everett, D. H.; Powl, J. C., Adsorption in slit-like and cylindrical micropores in the Henry’s law region: a model for the microporosity of carbons, J. Chem. Soc. Faraday Trans. 1, 72, 619-636, (1976)
[10] Gavze, E.; Shapiro, M., Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity, J. Fluid Mech., 371, 59-79, (1998) · Zbl 0939.76023
[11] Girifalco, L. A.; Hodak, M.; Lee, R. S., Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys. Rev. B, 62, 19, 13104-13110, (2000)
[12] Gombosi, T. I., Gaskinetic Theory, (1994), Cambridge University Press
[13] Hamaker, H. C., The London – van der Waals attraction between spherical particles, Physica, 4, 10, 1058-1072, (1937)
[14] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.; Mayer, M. G., Molecular Theory of Gases and Liquids, (1954), Wiley · Zbl 0057.23402
[15] Ivchenko, I. N., Loyalka, S. K. & Tompson, R. V. Jr.2007Analytical Methods for Problems of Molecular Transport, vol. 83. Springer Science & Business Media. doi:10.1007/978-1-4020-5865-3 · Zbl 1141.82001
[16] Kaufman, S. L.; Skogen, J. W.; Dorman, F. D.; Zarrin, F.; Lewis, K. C., Macromolecule analysis based on electrophoretic mobility in air: globular proteins, Analyt. Chem., 68, 11, 1895-1904, (1996)
[17] Khrapak, S. A., Electron and ion thermal forces in complex (dusty) plasmas, Phys. Plasmas, 20, 1, (2013)
[18] Khrapak, S. A., Accurate transport cross sections for the Lennard-Jones potential, Eur. Phys. J. D, 68, 10, 1-6, (2014)
[19] Kim, S. U.; Monroe, C. W., High-accuracy calculations of sixteen collision integrals for Lennard-Jones (12-6) gases and their interpolation to parameterize neon, argon, and krypton, J. Comput. Phys., 273, 358-373, (2014) · Zbl 1351.82030
[20] Kleinstreuer, C.; Zhang, Z.; Donohue, J. F., Targeted drug-aerosol delivery in the human respiratory system, Annu. Rev. Biomed. Engng, 10, 195-220, (2008)
[21] Knudsen, M., The Kinetic Theory of Gases: Some Modern Aspects, (1950), Metheun & Company · JFM 60.1420.10
[22] Kröger, M.; Hütter, M., Unifying kinetic approach to phoretic forces and torques onto moving and rotating convex particles, J. Chem. Phys., 125, 4, (2006)
[23] Li, Z., Critical particle size where the Stokes-Einstein relation breaks down, Phys. Rev. E, 80, 6, (2009)
[24] Li, Z.; Wang, H., Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime, Phys. Rev. E, 68, 6, (2003)
[25] Li, Z.; Wang, H., Drag force, diffusion coefficient, and electric mobility of small particles. II. Application, Phys. Rev. E, 68, 6, (2003)
[26] Li, Z.; Wang, H., Thermophoretic force and velocity of nanoparticles in the free molecule regime, Phys. Rev. E, 70, 2, (2004)
[27] Li, Z.; Wang, H., Gas – nanoparticle scattering: a molecular view of momentum accommodation function, Phys. Rev. Lett., 95, 1, (2005)
[28] Liu, N.; Bogy, D. B., Forces on a rotating particle in a shear flow of a highly rarefied gas, Phys. Fluids, 20, 10, (2008) · Zbl 1182.76465
[29] Liu, N.; Bogy, D. B., Forces on a spherical particle with an arbitrary axis of rotation in a weak shear flow of a highly rarefied gas, Phys. Fluids, 21, 4, (2009) · Zbl 1183.76320
[30] Mädler, L.; Friedlander, S. K., Transport of nanoparticles in gases: overview and recent advances, Aerosol Air Qual. Res., 7, 3, 304-342, (2007)
[31] Mclaughlin, J. B., Inertial migration of a small sphere in linear shear flows, J. Fluid Mech., 224, 261-274, (1991) · Zbl 0721.76029
[32] Merzkirch, W.; Bracht, K., The erosion of dust by a shock wave in air: initial stages with laminar flow, Intl J. Multiphase Flow, 4, 1, 89-95, (1978)
[33] De La Mora, J. F.; De Juan, L.; Liedtke, K.; Schmidt-Ott, A., Mass and size determination of nanometer particles by means of mobility analysis and focused impaction, J. Aerosol Sci., 34, 1, 79-98, (2003)
[34] Poiseuille, J. L. M., Observations of blood flow, Ann. Sci. Nat. Strie., 5, 2, 111-115, (1836)
[35] Rouquerol, F.; Rouquerol, J.; Sing, K., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, (1999), Academic
[36] Rubinow, S. I.; Keller, J. B., The transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech., 11, 447-459, (1961) · Zbl 0103.19503
[37] Saffman, P. G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, 385-400, (1965) · Zbl 0218.76043
[38] Salmanzadeh, M.; Zahedi, G.; Ahmadi, Gh.; Marr, D. R.; Glauser, M., Computational modeling of effects of thermal plume adjacent to the body on the indoor airflow and particle transport, J. Aerosol Sci., 53, 29-39, (2012)
[39] Seville, J. P. K., Tüzün, U. & Clift, R.1997Processing of Particulate Solids, vol. 9. Island Press. doi:10.1007/978-94-009-1459-9
[40] Wang, J.; Li, Z., Thermophoretic force on micro- and nanoparticles in dilute binary gas mixtures, Phys. Rev. E, 84, 2, (2011)
[41] Wang, J.; Li, Z., Negative thermophoresis of nanoparticles in the free molecular regime, Phys. Rev. E, 86, 1, (2012)
[42] Wong, R. Y.; Liu, C.; Wang, J.; Chao, C. Y.; Li, Z., Evaluation of the drag force on single-walled carbon nanotubes in rarefied gases, J. Nanosci. Nanotechnol., 12, 3, 2311-2319, (2012)
[43] Zhang, Y.; Li, S.; Yan, W.; Yao, Q., Nanoparticle transport and deposition in boundary layer of stagnation-point premixed flames, Powder Technol., 227, 24-34, (2012)
[44] Zheng, X.; Silber-Li, Z., The influence of Saffman lift force on nanoparticle concentration distribution near a wall, Appl. Phys. Lett., 95, 12, (2009)
[45] Zhou, J.; Papautsky, I., Fundamentals of inertial focusing in microchannels, Lab on a Chip, 13, 6, 1121-1132, (2013)
[46] Zou, X.-Y.; Cheng, H.; Zhang, C.-L.; Zhao, Y.-Z., Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain, Geomorphology, 90, 1, 11-22, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.