×

Rarefied gas flow through a slit. (English) Zbl 0731.76063

The problem is formulated as a system of integral equations for the macroscopic variables (the velocity, density, and temperature of the gas), derived from the linearized Boltzmann-Krook-Welander equation with the diffuse reflection boundary condition which is solved numerically by constructing the Neumann series. Numerical results are given.
Reviewer: I.Grosu (Iaşi)

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1002/andp.19093330106 · JFM 40.0825.02
[2] DOI: 10.1017/S002211206100007X · Zbl 0108.39104
[3] DOI: 10.1017/S0022112065000022 · Zbl 0146.23301
[4] DOI: 10.1017/S0022112061000986 · Zbl 0101.19401
[5] DOI: 10.1017/S0022112069001315 · Zbl 0164.55901
[6] DOI: 10.1103/PhysRev.94.511 · Zbl 0055.23609
[7] Welander P., Ark. Fys. 7 pp 507– (1954)
[8] DOI: 10.1016/0021-8928(58)90001-7 · Zbl 0099.20003
[9] DOI: 10.1063/1.1706585 · Zbl 0102.41101
[10] DOI: 10.1063/1.1729249
[11] DOI: 10.1143/JPSJ.19.1463
[12] DOI: 10.1143/JPSJ.21.1620
[13] DOI: 10.1063/1.1693330 · Zbl 0246.76082
[14] DOI: 10.1143/JPSJ.44.1981
[15] DOI: 10.1143/JPSJ.47.1676 · Zbl 1334.82005
[16] DOI: 10.1063/1.1762263
[17] DOI: 10.1016/0017-9310(67)90165-2
[18] Sone Y., J. Mec. Theor. Appl. 2 pp 3– (1983)
[19] DOI: 10.1143/JPSJ.21.1836
[20] DOI: 10.1063/1.1693136 · Zbl 0198.59405
[21] DOI: 10.1063/1.1693136 · Zbl 0198.59405
[22] DOI: 10.1063/1.1692121 · Zbl 0172.54701
[23] DOI: 10.1063/1.863943 · Zbl 0506.76082
[24] DOI: 10.3131/jvsj.30.425
[25] DOI: 10.3131/jvsj.31.416
[26] DOI: 10.1063/1.857463 · Zbl 0661.76079
[27] DOI: 10.1063/1.857457 · Zbl 0661.76082
[28] DOI: 10.1063/1.866112
[29] DOI: 10.1143/JPSJ.13.633
[30] DOI: 10.1063/1.857478 · Zbl 0696.76092
[31] Sone Y., Eur. J. Mech. B/Fluids 9 pp 273– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.