Drainage flow of a viscous compressible fluid from a small capillary with a sealed end. (English) Zbl 1419.76307

Summary: Volumetric expansion driven drainage flow of a viscous compressible fluid from a small capillary with a sealed end is studied in the low Mach number limit using the linearized compressible Navier-Stokes equations with no-slip condition. Density relaxation, oscillation and decay as well as the velocity field are investigated in detail. It is shown that fluid drainage is controlled by the slow decay of the standing acoustic wave inside the capillary; and the acoustic wave retards the density diffusion by reducing the diffusion coefficient of the density envelope equation by one half. Remarkably the no-slip flow exhibits a slip-like mass flow rate. The period-averaged mass flow rate at the exit (drainage rate) is found proportional to the fluid’s kinematic viscosity via the density diffusion coefficient and the average drainage speed is independent of the capillary radius. These findings are valid for arbitrarily small capillaries as long as the continuum assumption holds and they are in stark contrast to the classical lubrication based theory. Generalization to a capillary with a sound absorbing end is achieved by a simple model. The reported results offer new insights to the nature of slow viscous compressible flows in very small capillaries.


76F40 Turbulent boundary layers
76R05 Forced convection
76N15 Gas dynamics (general theory)


Full Text: DOI


[1] Amann-Hildenbrand, A.; Ghanizadeh, A.; Krooss, B. M., Transport properties of unconventional gas systems, Mar. Petrol. Geol., 31, 90-99, (2012)
[2] Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics, (1989), Dover · Zbl 1158.76300
[3] Arkilic, E. B.1994 Gaseous flow in micron-sized channels. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.
[4] Arkilic, E. B.; Schmidt, M. A.; Breuer, K. S., Gaseous slip flow in long microchannels, J. Microelectromech. Syst., 6, 2, 167-178, (1997)
[5] Arkilic, E. B., Schmidt, M. A. & Breuer, K. S.1997bTMAC measurement in silicon micromachined channels. In Proceedings of 20th Symposium on Rarefied Gas Dynamics. Peking University Press. · Zbl 1085.76500
[6] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineer, (1978), McGraw-Hill · Zbl 0417.34001
[7] Van Den Berg, H. R.; Seldam, C. A.; Van Der Gulik, P. S., Compressible laminar flow in a capillary, J. Fluid Mech., 246, 1-20, (1993) · Zbl 0765.76075
[8] Beskok, A.; Karniadakis, G. E., Report: a model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Therm. Engng, 3, 43-77, (1999)
[9] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena, (2007), Wiley
[10] Brenner, H., Navier-Stokes revisited, Physica A, 349, 60-132, (2005)
[11] Carslaw, H. S.; Jaeger, J. C., Conduction of Heat in Solids, (1959), Oxford Science Publications · Zbl 0972.80500
[12] Chakraborty, S.; Durst, F., Derivations of extended Navier-Stokes equations from upscaled molecular transport considerations for compressible ideal gas flows: towards extended constitutive forms, Phys. Fluids, 19, 8, (2007) · Zbl 1182.76134
[13] Chorin, A. J.; Marsden, J. E., A Mathematical Introduction to Fluid Mechanics, (1992), Springer · Zbl 0712.76008
[14] Colin, S., Rarefaction and compressibility effects on steady and transient gas flows in microchannels, Microfluid Nanofluid, 1, 268-279, (2005)
[15] COMSOL 2016 COMSOL Multiphysics® Modeling Software, Burlington, MA, USA, www.comsol.com.
[16] Curtis, M. E.; Sondergeld, C. H.; Ambrose, R. J.; Rai, C. S., Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging, Bull. Am. Assoc. Petrol. Geol., 96, 665-677, (2012)
[17] Dadzie, S. K.; Brenner, H., Predicting enhanced mass flow rates in gas microchannels using nonkinetic models, Phys. Rev. E, 86, (2012)
[18] Dongari, N.; Agrawal, A., Analytical solution of gaseous slip flow in long microchannels, Intl J. Heat Mass Transfer, 50, 3411-3421, (2007) · Zbl 1151.76417
[19] Dongari, N.; Sharma, A.; Durst, F., Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes, Microfluid Nanofluid, 6, 679-692, (2009)
[20] Durst, F., Gomes, J. & Sambasivam, R.2006Thermofluiddynamics: do we solve the right kind of equations. In Proceeding of the International Symposium on Turbulence, Heat and Mass Transfer, pp. 25-29. Begell House.
[21] Ewart, T. P.; Perrier, P.; Graur, I. A.; Meolans, J. G., Mass flow rate measurements in gas micro flows, Exp. Fluids, 41, 487-498, (2006)
[22] Ewart, T. P.; Perrier, P.; Graur, I. A.; Meolans, J. G., Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes, J. Fluid Mech., 584, 337-356, (2007) · Zbl 1117.76300
[23] Ewart, T. P.; Perrier, P.; Graur, I. A.; Meolans, J. G., Tangential momentum accommodation in microtube, Microfluid Nanofluid, 3, 689-695, (2007)
[24] Felderhof, B. U., Transient flow of a viscous compressible fluid in a circular tube after a sudden point impulse, J. Fluid Mech., 644, 97-106, (2010) · Zbl 1189.76437
[25] Friend, J.; Yeo, L. Y., Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics, Rev. Mod. Phys., 83, 4, 647-704, (2011)
[26] Frydel, D.; Diamant, H., Sound-mediated dynamic correlations between colloidal particles in a quasi-one-dimensional channel, Microparticles in Stokes Flows 2011, J. Phys.: Conf. Ser., 392, (2012)
[27] Gad-El-Hak, M., The fluid mechanics of microdevices – the Freeman scholar lecture, ASME Trans. J. Fluids Engng, 121, 5-33, (1999)
[28] Gottlieb, M.; Bird, R. B., Exit effects in non-Newtonian liquids: an experimental study, Ind. Engng Chem. Fundam., 18, 4, 357-368, (1979)
[29] Gresho, P. M., Incompressible fluid dynamics: some fundamental formulation issues, Annu. Rev. Fluid Mech., 23, 413-453, (1991) · Zbl 0717.76006
[30] Guo, Z. Y.; Wu, X. B., Compressibility effect on the gas flow and heat transfer in a microtube, Intl J. Heat Mass Transfer, 40, 13, 3251-3254, (1997)
[31] Hadjiconstantinou, N. G., Comment on Cercignani’s second-order slip coefficient, Phys. Fluids, 15, 8, 2352-2354, (2003)
[32] Hadjiconstantinou, N. G., The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics, Phys. Fluids, 18, (2006) · Zbl 1146.76400
[33] Hagen, M. H. J.; Pagonabarraga, I.; Lowe, C. P.; Frenkel, D., Algebraic decay of velocity fluctuations in a confined fluid, Phys. Rev. Lett., 78, 19, 3785-3788, (1997)
[34] Harley, C.; Huang, Y. H.; Bau, H.; Zemel, J. N., Gas flow in microchannels, J. Fluid Mech., 284, 257-274, (1995)
[35] Ho, C. M.; Tai, Y. C., Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech., 30, 579-612, (1998)
[36] Hong, C.; Asako, Y.; Lee, J., Poiseuille number correlation for high speed micro-flows, J. Phys. D: Appl. Phys., 41, (2008)
[37] Hultmark, M.; Aristoff, J. M.; Stone, H. A., The influence of the gas phase on liquid imbibition in capillary tubes, J. Fluid Mech., 678, 600-606, (2011) · Zbl 1241.76031
[38] Jain, V.; Lin, C. X., Numerical modeling of three-dimensional compressible gas flow in microchannels, J. Micromech. Microengng, 16, 292-302, (2006)
[39] Jaishankar, A.; Mckinley, G. H., An analytical solution to the extended Navier-Stokes equations using the Lambert W function, AIChE J., 60, 4, 1413-1423, (2014)
[40] Jang, J., Zhao, Y., Wereley, S. T. & Gui, L.2002Mass flow measurement of gases in deep-RIE microchannels. In Proceedings of IMECE2002 ASME International Mechanical Engineering Congress and Exposition, pp. 17-22. ASME.
[41] Karniadakis, G.; Beskok, A.; Aluru, N., Microflows and Nanoflows: Fundamentals and Simulation, (2005), Springer · Zbl 1115.76003
[42] Knudsen, M., Die Gesetze der Molekularstroemung und der inneren Reibungsstroemung der Gase durch Roehren, Ann. Phys., 333, 75-130, (1909) · JFM 40.0825.02
[43] Leal, L. G., Advanced Transport Phenomena, (2010), Cambridge University Press
[44] Maurer, J.; Tabeling, P.; Joseph, P.; Willaime, H., Second-order slip laws in microchannels for helium and nitrogen, Phys. Fluids, 15, 2613-2621, (2003) · Zbl 1186.76356
[45] Maxwell, J. C., On stresses in rarified gases arising from inequalities of temperature, Phil. Trans. R. Soc. Lond., 170, 231-256, (1879) · JFM 11.0777.01
[46] Monkewitz, P. A., The linearized treatment of forced gas oscillations in tubes, J. Fluid Mech., 91, 357-397, (1979) · Zbl 0437.76066
[47] Morse, P. M.; Ingard, K. U., Theoretical Acoustics, (1968), McGraw-Hill
[48] Panton, R. L., Incompressible Flow, (2013), Wiley
[49] Poinsot, T. J.; Lele, S. K., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 104-129, (1992) · Zbl 0766.76084
[50] Prud’Homme, R. K.; Chapman, T. W.; Bowen, J. R., Laminar compressible flow in a tube, Appl. Sci. Res., 43, 67-74, (1986) · Zbl 0587.76123
[51] Rassenfoss, S., Unconventional rock defies old rules, but new rules are far from being ready, J. Petrol. Tech., 67, 9, 64-66, (2015)
[52] Sani, R. L.; Gresho, P. M., Resume and remarks on the open boundary condition minisymposium, Intl J. Numer. Meth. Fluids, 18, 983-1008, (1994) · Zbl 0806.76072
[53] Scarton, H. A.; Rouleau, W. T., Axisymmetric waves in compressible Newtonian liquids contained in rigid tubes: steady-periodic mode shapes and dispersion by the method of eigenvalleys, J. Fluid Mech., 58, 595-621, (1973) · Zbl 0277.76077
[54] Schwartz, L. W., A perturbation solution for compressible viscous channel flow, J. Engng Maths, 21, 69-86, (1987) · Zbl 0609.76074
[55] Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow, vols. 1 & 2, (1953), Wiley & Sons
[56] Shih, J., Ho, C., Liu, J. & Tai, Y.1996Monoatomic and polyatomic gas flow through uniform microchannels. In Application of Microfabrication to Fluid Mechanics, ASME Winter Annual Meeting, pp. 197-203. ASME.
[57] Squires, T. M., Microfluidics: fluid physics at the nanoliter scale, Rev. Mod. Phys., 77, 7, 977-1026, (2005)
[58] Stone, H. A.; Kim, S., Microfluidics: basic issues, applications, and challenges, AIChE J., 47, 1250-1254, (2001)
[59] Taliadorou, E. G.; Neophytou, M.; Georgiou, G. C., Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids, J. Non-Newtonian Fluid Mech., 163, 25-34, (2009) · Zbl 1274.76213
[60] Temkin, S., Elements of Acoustics, (1981), John Wiley & Sons
[61] Tsien, H.-S., Superaerodynamics, mechanics of rarefied gases, J. Aeronaut. Sci., 13, 653-664, (1946)
[62] Venerus, D. C.; Bugajsky, D. J., Compressible laminar flow in a channel, Phys. Fluids, 22, (2010) · Zbl 1188.76166
[63] Venerus, D. C., Laminar capillary flow of compressible viscous fluids, J. Fluid Mech., 555, 59-80, (2006) · Zbl 1090.76064
[64] Veltzke, T.; Thaming, J., An analytically predictive model for moderately rarefied gas flow, J. Fluid Mech., 698, 406-422, (2012) · Zbl 1250.76148
[65] Wu, L., A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett., 93, 25, (2008)
[66] Yamaguchi, H.; Hanawa, T.; Yamamoto, O.; Matsuda, Y.; Egami, Y.; Niimi, T., Experimental measurement on tangential momentum accommodation coefficient in a single microtube, Microfluid Nanofluid, 11, 57-64, (2011)
[67] Yuan, J.; Chen, K. P., Choked gas flow at pore-scale and its implications to production from high-pressure gas wells, Trans. ASME J. Fluids Engng, 138, (2016)
[68] Zhang, W. M.; Meng, G.; Wei, X., A review on slip models for gas microflows, Microfluid Nanofluid, 13, 6, 845-882, (2012)
[69] Zohar, Y.; Lee, S. Y. K.; Lee, W. Y.; Jiang, L.; Tong, P., Subsonic gas flow in a straight and uniform microchannel, J. Fluid Mech., 427, 125-151, (2002) · Zbl 1037.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.