×

Five-dimensional gauge-Higgs unification: a standard model-like spectrum. (English) Zbl 1388.81265

Summary: We study the viability of five-dimensional gauge theories as candidates for the origin of the Higgs field and its mechanism for spontaneous symmetry breaking. Within the framework of lattice field theory, we consider the simplest model of an \(\mathrm{SU}(2)\) gauge theory. We construct this theory on a five-dimensional orbifold which explicitly breaks the gauge symmetry to \(U(1)\) at the fixed points of the orbifold. Using anisotropic gauge couplings, we find that this theory exhibits three distinct phases which we label as confined, Higgs and hybrid. Within the Higgs phase, close to the Higgs-hybrid phase transition, we find that the ratio of the Higgs to gauge boson masses takes Standard Model-like values. Precisely in this region of the phase diagram, we find dimensional reduction via localisation.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett.13 (1964) 321 [INSPIRE]. · doi:10.1103/PhysRevLett.13.321
[2] P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett.12 (1964) 132 [INSPIRE]. · doi:10.1016/0031-9163(64)91136-9
[3] P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett.13 (1964) 508 [INSPIRE]. · doi:10.1103/PhysRevLett.13.508
[4] N.S. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys.B 158 (1979) 141 [INSPIRE]. · doi:10.1016/0550-3213(79)90192-5
[5] D.B. Fairlie, Higgs’ fields and the determination of the Weinberg angle, Phys. Lett.B 82 (1979) 97 [INSPIRE]. · doi:10.1016/0370-2693(79)90434-9
[6] Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett.B 129 (1983) 193 [INSPIRE]. · doi:10.1016/0370-2693(83)90841-9
[7] S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev.D 7 (1973) 1888 [INSPIRE].
[8] A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys.B 625 (2002) 128 [hep-ph/0107039] [INSPIRE]. · Zbl 0985.81132 · doi:10.1016/S0550-3213(02)00016-0
[9] G. von Gersdorff, N. Irges and M. Quirós, Bulk and brane radiative effects in gauge theories on orbifolds, Nucl. Phys.B 635 (2002) 127 [hep-th/0204223] [INSPIRE]. · Zbl 0996.81050 · doi:10.1016/S0550-3213(02)00395-4
[10] H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev.D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
[11] I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys.3 (2001) 20 [hep-th/0108005] [INSPIRE]. · Zbl 0992.81088 · doi:10.1088/1367-2630/3/1/320
[12] M. Kubo, C.S. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S1/Z2, Mod. Phys. Lett.A 17 (2002) 2249 [hep-ph/0111327] [INSPIRE]. · Zbl 1083.81553 · doi:10.1142/S0217732302008988
[13] C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys.B 669 (2003) 128 [hep-ph/0304220] [INSPIRE]. · doi:10.1016/j.nuclphysb.2003.07.013
[14] G. Cossu, H. Hatanaka, Y. Hosotani and J.-I. Noaki, Polyakov loops and the Hosotani mechanism on the lattice, Phys. Rev.D 89 (2014) 094509 [arXiv:1309.4198] [INSPIRE].
[15] N. Irges, F. Knechtli and M. Luz, The Higgs mechanism as a cut-off effect, JHEP08 (2007) 028 [arXiv:0706.3806] [INSPIRE]. · doi:10.1088/1126-6708/2007/08/028
[16] N. Irges and F. Knechtli, Non-perturbative definition of five-dimensional gauge theories on the R4 × S1/Z2orbifold, Nucl. Phys.B 719 (2005) 121 [hep-lat/0411018] [INSPIRE]. · Zbl 1207.81072 · doi:10.1016/j.nuclphysb.2005.05.002
[17] F. Knechtli, B. Bunk and N. Irges, Gauge theories on a five-dimensional orbifold, PoS(LAT2005)280 [hep-lat/0509071] [INSPIRE].
[18] N. Irges and F. Knechtli, Non-perturbative mass spectrum of an extra-dimensional orbifold, hep-lat/0604006 [INSPIRE]. · Zbl 1207.81072
[19] N. Irges and F. Knechtli, Lattice gauge theory approach to spontaneous symmetry breaking from an extra dimension, Nucl. Phys.B 775 (2007) 283 [hep-lat/0609045] [INSPIRE]. · Zbl 1117.81102 · doi:10.1016/j.nuclphysb.2007.01.023
[20] N. Irges, F. Knechtli and K. Yoneyama, Mean-field gauge interactions in five dimensions II. The orbifold, Nucl. Phys.B 865 (2012) 541 [arXiv:1206.4907] [INSPIRE]. · Zbl 1262.81240 · doi:10.1016/j.nuclphysb.2012.08.011
[21] N. Irges, F. Knechtli and K. Yoneyama, Higgs mechanism near the 5d bulk phase transition, Phys. Lett.B 722 (2013) 378 [arXiv:1212.5514] [INSPIRE]. · doi:10.1016/j.physletb.2013.04.032
[22] J.-M. Drouffe and J.-B. Zuber, Strong coupling and mean field methods in lattice gauge theories, Phys. Rept.102 (1983) 1 [INSPIRE]. · doi:10.1016/0370-1573(83)90034-0
[23] S. Elitzur, Impossibility of spontaneously breaking local symmetries, Phys. Rev.D 12 (1975) 3978 [INSPIRE].
[24] K. Ishiyama, M. Murata, H. So and K. Takenaga, Symmetry and Z2orbifolding approach in five-dimensional lattice gauge theory, Prog. Theor. Phys.123 (2010) 257 [arXiv:0911.4555] [INSPIRE]. · Zbl 1187.81213 · doi:10.1143/PTP.123.257
[25] N. Irges and F. Knechtli, Non-perturbative gauge-Higgs unification: symmetries and order parameters, JHEP06 (2014) 070 [arXiv:1312.3142] [INSPIRE]. · doi:10.1007/JHEP06(2014)070
[26] M. Creutz, Confinement and the critical dimensionality of space-time, Phys. Rev. Lett.43 (1979) 553 [Erratum ibid.43 (1979) 890] [INSPIRE].
[27] F. Knechtli, M. Luz and A. Rago, On the phase structure of five-dimensional SU(2) gauge theories with anisotropic couplings, Nucl. Phys.B 856 (2012) 74 [arXiv:1110.4210] [INSPIRE]. · Zbl 1246.81138 · doi:10.1016/j.nuclphysb.2011.11.001
[28] K. Farakos and S. Vrentzos, Exploration of the phase diagram of 5d anisotropic SU(2) gauge theory, Nucl. Phys.B 862 (2012) 633 [arXiv:1007.4442] [INSPIRE]. · Zbl 1246.81122 · doi:10.1016/j.nuclphysb.2012.05.002
[29] L. Del Debbio, R.D. Kenway, E. Lambrou and E. Rinaldi, The transition to a layered phase in the anisotropic five-dimensional SU(2) Yang-Mills theory, Phys. Lett.B 724 (2013) 133 [arXiv:1305.0752] [INSPIRE]. · Zbl 1331.81227 · doi:10.1016/j.physletb.2013.05.062
[30] N. Irges, G. Koutsoumbas and K. Ntrekis, The quantum phase transition of high dimensional Yang-Mills theories, arXiv:1503.06431 [INSPIRE].
[31] S. Ejiri, J. Kubo and M. Murata, A study on the nonperturbative existence of Yang-Mills theories with large extra dimensions, Phys. Rev.D 62 (2000) 105025 [hep-ph/0006217] [INSPIRE].
[32] P. de Forcrand, A. Kurkela and M. Panero, The phase diagram of Yang-Mills theory with a compact extra dimension, JHEP06 (2010) 050 [arXiv:1003.4643] [INSPIRE]. · Zbl 1290.81061 · doi:10.1007/JHEP06(2010)050
[33] L. Del Debbio, A. Hart and E. Rinaldi, Light scalars in strongly-coupled extra-dimensional theories, JHEP07 (2012) 178 [arXiv:1203.2116] [INSPIRE]. · doi:10.1007/JHEP07(2012)178
[34] M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP07 (2011) 036 [arXiv:1105.4749] [INSPIRE]. · Zbl 1298.81399 · doi:10.1007/JHEP07(2011)036
[35] P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev.D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].
[36] M. Creutz, Overrelaxation and Monte Carlo simulation, Phys. Rev.D 36 (1987) 515 [INSPIRE].
[37] F.R. Brown and T.J. Woch, Overrelaxed heat bath and Metropolis algorithms for accelerating pure gauge Monte Carlo calculations, Phys. Rev. Lett.58 (1987) 2394 [INSPIRE]. · doi:10.1103/PhysRevLett.58.2394
[38] A.D. Kennedy and B.J. Pendleton, Improved heat bath method for Monte Carlo calculations in lattice gauge theories, Phys. Lett.B 156 (1985) 393 [INSPIRE]. · doi:10.1016/0370-2693(85)91632-6
[39] K. Fabricius and O. Haan, Heat bath method for the twisted Eguchi-Kawai model, Phys. Lett.B 143 (1984) 459 [INSPIRE]. · doi:10.1016/0370-2693(84)91502-8
[40] B. Bunk, Heatbath update for U(1), internal notes, (1995).
[41] D. Best and N. Fisher, Efficient simulation of the von Mises distribution, Appl. Statist.28 (1979) 152. · Zbl 0435.62021 · doi:10.2307/2346732
[42] ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, Comput. Phys. Commun.156 (2004) 143 [Erratum ibid.176 (2007) 383] [hep-lat/0306017] [INSPIRE]. · Zbl 1196.65138
[43] G. Arnold, B. Bunk, T. Lippert and K. Schilling, Compact QED under scrutiny: it’s first order, Nucl. Phys. Proc. Suppl.119 (2003) 864 [hep-lat/0210010] [INSPIRE]. · Zbl 1097.81566 · doi:10.1016/S0920-5632(03)01704-3
[44] G. Moir, P. Dziennik, F. Knechtli, K. Yoneyama and N. Irges, Gauge and Higgs boson masses from an extra dimension, PoS(LATTICE2014)248 [arXiv:1411.0417] [INSPIRE].
[45] E.H. Fradkin and S.H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev.D 19 (1979) 3682 [INSPIRE].
[46] D.J.E. Callaway and L.J. Carson, The Abelian Higgs model: a Monte Carlo study, Phys. Rev.D 25 (1982) 531 [INSPIRE].
[47] G. Parisi, R. Petronzio and F. Rapuano, A measurement of the string tension near the continuum limit, Phys. Lett.B 128 (1983) 418 [INSPIRE]. · doi:10.1016/0370-2693(83)90930-9
[48] A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev.D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE].
[49] K. Yoneyama, The lattice approach to five dimensional gauge theories, Ph.D. thesis, http://elpub.bib.uni-wuppertal.de/edocs/dokumente/fbc/physik/diss2014/yoneyama, (2014).
[50] G.R. Dvali and M.A. Shifman, Domain walls in strongly coupled theories, Phys. Lett.B 396 (1997) 64 [Erratum ibid.B 407 (1997) 452] [hep-th/9612128] [INSPIRE].
[51] M. Laine, H.B. Meyer, K. Rummukainen and M. Shaposhnikov, Effective gauge theories on domain walls via bulk confinement?, JHEP04 (2004) 027 [hep-ph/0404058] [INSPIRE]. · doi:10.1088/1126-6708/2004/04/027
[52] Y.K. Fu and H.B. Nielsen, A layer phase in a nonisotropic U(1) lattice gauge theory: dimensional reduction a new way, Nucl. Phys.B 236 (1984) 167 [INSPIRE]. · doi:10.1016/0550-3213(84)90529-7
[53] M. Lüscher, K. Symanzik and P. Weisz, Anomalies of the free loop wave equation in the WKB approximation, Nucl. Phys.B 173 (1980) 365 [INSPIRE]. · doi:10.1016/0550-3213(80)90009-7
[54] M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories, Nucl. Phys.B 180 (1981) 317 [INSPIRE]. · doi:10.1016/0550-3213(81)90423-5
[55] M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP07 (2002) 049 [hep-lat/0207003] [INSPIRE]. · doi:10.1088/1126-6708/2002/07/049
[56] R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and αsin SU(2) Yang-Mills theory, Nucl. Phys.B 411 (1994) 839 [hep-lat/9310022] [INSPIRE]. · doi:10.1016/0550-3213(94)90473-1
[57] O. Philipsen, M. Teper and H. Wittig, Scalar gauge dynamics in (2 + 1)-dimensions at small and large scalar couplings, Nucl. Phys.B 528 (1998) 379 [hep-lat/9709145] [INSPIRE]. · doi:10.1016/S0550-3213(98)00330-7
[58] H.G. Evertz, K. Jansen, J. Jersak, C.B. Lang and T. Neuhaus, Photon and bosonium masses in scalar lattice QED, Nucl. Phys.B 285 (1987) 590 [INSPIRE]. · doi:10.1016/0550-3213(87)90356-7
[59] C. Michael, Adjoint sources in lattice gauge theory, Nucl. Phys.B 259 (1985) 58 [INSPIRE]. · doi:10.1016/0550-3213(85)90297-4
[60] M. Lüscher and U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl. Phys.B 339 (1990) 222 [INSPIRE]. · doi:10.1016/0550-3213(90)90540-T
[61] J.J. Dudek, R.G. Edwards, M.J. Peardon, D.G. Richards and C.E. Thomas, Toward the excited meson spectrum of dynamical QCD, Phys. Rev.D 82 (2010) 034508 [arXiv:1004.4930] [INSPIRE].
[62] ALPHA collaboration, F. Knechtli and R. Sommer, String breaking as a mixing phenomenon in the SU(2) Higgs model, Nucl. Phys.B 590 (2000) 309 [hep-lat/0005021] [INSPIRE]. · Zbl 1215.81028
[63] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[64] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.