×

zbMATH — the first resource for mathematics

A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation. (English) Zbl 1352.76066
Summary: We present a monolithic geometric multigrid solver for fluid-structure interaction problems in Arbitrary Lagrangian Eulerian coordinates. The coupled dynamics of an incompressible fluid with nonlinear hyperelastic solids gives rise to very large and ill-conditioned systems of algebraic equations. Direct solvers usually are out of question because of memory limitations, and standard coupled iterative solvers are seriously affected by the bad condition number of the system matrices. The use of partitioned preconditioners in Krylov subspace iterations is an option, but the convergence will be limited by the outer partitioning. Our proposed solver is based on a Newton linearization of the fully monolithic system of equations, discretized by a Galerkin finite element method. Approximation of the linearized systems is based on a monolithic generalized minimal residual method iteration, preconditioned by a geometric multigrid solver. The special character of fluid-structure interactions is accounted for by a partitioned scheme within the multigrid smoother only. Here, fluid and solid field are segregated as Dirichlet–Neumann coupling. We demonstrate the efficiency of the multigrid iteration by analyzing 2d and 3d benchmark problems. While 2d problems are well manageable with available direct solvers, challenging 3d problems highly benefit from the resulting multigrid solver.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
74F05 Thermal effects in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Le Tallec, Fluid structure interaction with large structural displacement, Computer Methods in Applied Mechanics and Engineering 190 pp 3039– (2001) · Zbl 1001.74040 · doi:10.1016/S0045-7825(00)00381-9
[2] Hou, Numerical methods for fluid-structure interaction - a review, Communications in Computational Physics 12 (2) pp 337– (2012) · Zbl 1373.76001 · doi:10.4208/cicp.291210.290411s
[3] Causin, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Computer Methods in Applied Mechanics and Engineering 194 pp 4506– (2005) · Zbl 1101.74027 · doi:10.1016/j.cma.2004.12.005
[4] Förster, Artificial mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer methods Applied Mechanics and Engineering 196 pp 1278– (2007) · Zbl 1173.74418 · doi:10.1016/j.cma.2006.09.002
[5] Heil, Solvers for large-displacement fluid-structure interaction problems: segregated vs. monolithic approaches, Computational Mechanics 43 pp 91– (2008) · Zbl 1309.76126 · doi:10.1007/s00466-008-0270-6
[6] Brummelen, Partitioned iterative solution methods for fluid-structure interaction, International Journal for Numerical Methods in Fluids 65 pp 3– (2011) · Zbl 1427.74049 · doi:10.1002/fld.2465
[7] Heil, Stokes flow in an elastic tube - a large-displacement fluid-structure interaction problem, International Journal for Numerical Methods in Fluids 28 pp 243– (1998) · Zbl 0916.73054 · doi:10.1002/(SICI)1097-0363(19980815)28:2<243::AID-FLD711>3.0.CO;2-U
[8] Küttler, Coupling strategies for biomedical fluid structure interaction problems, International Journal of Numerical Methods in Biomedical Engineering 26 pp 305– (2010) · Zbl 1183.92008 · doi:10.1002/cnm.1281
[9] Mok, Trends in Computational Structural Mechanics pp 689– (2001)
[10] Hron, Fluid-Structure Interaction: Modeling, Simulation, Optimization pp 371– (2006)
[11] Heywood, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids 22 pp 325– (1992) · Zbl 0863.76016 · doi:10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
[12] Becker R Braack M Meidner D Richter T Vexler B The finite element toolkit GASCOIGNE http://www.gascoigne.uni-hd.de
[13] Kimmritz, Parallel multigrid method for finite element simulations of complex flow problems on locally refined meshes, Numerical Linear Algebra with Applications 18 pp 615– (2011) · Zbl 1265.76043 · doi:10.1002/nla.744
[14] Davis, Umfpack, an unsymmetric-pattern multifrontal method, ACM Transactions on Mathematical Software 30 (2) pp 196– (2014) · Zbl 1072.65037 · doi:10.1145/992200.992206
[15] Bungartz, Lecture Notes in Computational Science and Engineering, in: Fluid-Structure Interaction. Modelling, Simulation, Optimisation (2006) · Zbl 1097.76002 · doi:10.1007/3-540-34596-5
[16] Lecture Notes in Computational Science and Engineering, in: Fluid-Structure Interaction II. Modelling, Simulation, Optimisation (2010)
[17] Fernández, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering 69 (4) pp 794– (2007) · Zbl 1194.74393 · doi:10.1002/nme.1792
[18] Gee, Truly monolithic algebraic multigrid for fluid-structure interaction, International Journal for Numerical Methods in Engineering 85 pp 987– (2010) · Zbl 1217.74121 · doi:10.1002/nme.3001
[19] Küttler, Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computational Mechanics 43 pp 61– (2008) · Zbl 1236.74284 · doi:10.1007/s00466-008-0255-5
[20] Matthies, Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interactions, Computers & Structures 80 pp 1991– (2002) · doi:10.1016/S0045-7949(02)00259-6
[21] Matthies, Partitioned strong coupling algorithms for fluid-structure interaction, Computers & Structures 81 pp 805– (2003) · doi:10.1016/S0045-7949(02)00409-1
[22] Quaini, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method, Mathematical Models and Methods in Applied Sciences 17 pp 957– (2007) · Zbl 1388.74041 · doi:10.1142/S0218202507002170
[23] Bazilevs, Computational Fluid-structure Interaction: Methods and Applications (2013) · Zbl 1286.74001 · doi:10.1002/9781118483565
[24] Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering 193 pp 1– (2004) · Zbl 1137.74439 · doi:10.1016/j.cma.2003.09.006
[25] Razzaq, FEM multigrid techniques for fluid structure interaction with application to hemodynamics, Applied Numerical Mathematics 62 (9) pp 1156– (2012) · Zbl 1426.76296 · doi:10.1016/j.apnum.2010.12.010
[26] Washio, A robust preconditioner for fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering 194 (39- 41) pp 4027– (2005) · Zbl 1151.74423 · doi:10.1016/j.cma.2004.10.001
[27] Barker, Scalable parallel methods for monolithic coupling in fluid structure interaction with application to blood flow modeling, Journal of Comparative Physiology 229 (3) pp 642– (2010) · Zbl 1253.76137 · doi:10.1016/j.jcp.2009.10.001
[28] Brummelen, Space/time multigrid for a fluid-structure-interaction problem, Applied Numerical Mathematics 58 (12) pp 1951– (2008) · Zbl 1148.74046 · doi:10.1016/j.apnum.2007.11.012
[29] Hron, European Conference on Computational Fluid Dynamics ECCOMAS CFD pp 1– (2006)
[30] Hron, Fluid-Structure Interaction: Modeling, Simulation, Optimization pp 146– (2006) · Zbl 1323.74086 · doi:10.1007/3-540-34596-5_7
[31] Bna S Multilevel domain decomposition algorithms for monolithic fluid-structure interaction problems with application to haemodynamics Ph.D. Thesis Bologna 2014
[32] Richter, Goal oriented error estimation for fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering 223-224 pp 28– (2012) · Zbl 1253.74037 · doi:10.1016/j.cma.2012.02.014
[33] Becker, Multigrid techniques for finite elements on locally refined meshes, Numerical Linear Algebra with Applications 7 pp 363– (2000) · Zbl 1051.65117 · doi:10.1002/1099-1506(200009)7:6<363::AID-NLA202>3.0.CO;2-V
[34] Donea, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering 33 pp 689– (1982) · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[35] Hughes, Lagrangian-Eulerian finite element formulations for incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering 29 pp 329– (1981) · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[36] Richter, Finite elements of fluid-structure interaction in ale and fully Eulerian coordinates, Computer Methods in Applied Mechanics and Engineering 199 pp 2633– (2010) · Zbl 1231.74436 · doi:10.1016/j.cma.2010.04.016
[37] Becker, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo 38 (4) pp 173– (2001) · Zbl 1008.76036 · doi:10.1007/s10092-001-8180-4
[38] Wick, Fluid-structure interactions using different mesh motion techniques, Computers and Structures 89 pp 1456– (2011) · doi:10.1016/j.compstruc.2011.02.019
[39] Richter T Wick T On time discretizations of fluid-structure interactions Multiple Shooting and Time Domain Decomposition Methods Carraro T Geiger M Körkel S Rannacher R Springer Berlin, Heidelberg, New York
[40] Grätsch, Goal-oriented error estimation in the analysis of fluid flows with structural interactions, Computer Methods in Applied Mechanics and Engineering 195 pp 5673– (2006) · Zbl 1122.76055 · doi:10.1016/j.cma.2005.10.020
[41] Tezduyar, Finite element methods for fluid dynamics with moving boundaries and interfaces, Archives of Computational Methods in Engineering 8 pp 83– (2001) · Zbl 1039.76037 · doi:10.1007/BF02897870
[42] Dunne T Adaptive finite element approximation of fluid-structure interaction based on Eulerian and arbitrary Lagrangian-Eulerian variational formulations Ph.D. Thesis Heidelberg 2007 · Zbl 1139.76002
[43] Fernández, A Newton method using exact Jacobians for solving fluid-structure coupling, Computers and Structures 83 pp 127– (2005) · doi:10.1016/j.compstruc.2004.04.021
[44] The MathWorks, MATLAB and Statistics Toolbox (2012b)
[45] Saad, Iterative Methods for Sparse Linear Systems (1996) · Zbl 1031.65047
[46] Richter, A posteriori error estimation and anisotropy detection with the dual weighted residual method, International Journal for Numerical Methods in Fluids 62 (1) pp 90– (2010) · Zbl 1192.65144 · doi:10.1002/fld.2016
[47] Becker, Fast and reliable solution of the Navier-Stokes equations including chemistry, Computing and Visualization in Science 2 (2 and 3) pp 107– (1999) · Zbl 1067.76560 · doi:10.1007/s007910050033
[48] Braack, Reactive Flows, Diffusion and Transport pp 93– (2007) · Zbl 1398.76096 · doi:10.1007/978-3-540-28396-6_5
[49] Muddle, An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates, Journal of Computational Physics 231 pp 7315– (2012) · Zbl 1284.65049 · doi:10.1016/j.jcp.2012.07.001
[50] Brummelen, Added mass effects of compressible and incompressible flows in fluid-structure interaction, Journal of Applied Mechanics 76 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.