zbMATH — the first resource for mathematics

Numerical benchmarking of fluid-rigid body interactions. (English) Zbl 07124629
Summary: We propose a fluid-rigid body interaction benchmark problem, consisting of a solid spherical obstacle in a Newtonian fluid, whose centre of mass is fixed but is free to rotate. A number of different problems are defined for both two and three spatial dimensions. The geometry is chosen specifically, such that the fluid-solid partition does not change over time and classical fluid solvers are able to solve the fluid-structure interaction problem. We summarise the different approaches used to handle the fluid-solid coupling and numerical methods used to solve the arising problems. The results obtained by the described methods are presented, and we give reference intervals for the relevant quantities of interest.
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Schäfer, M.; Turek, S., Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), (Hirschel, E., Flow simulation with high-performance computers II. DFG priority research program results 1993-1995. Flow simulation with high-performance computers II. DFG priority research program results 1993-1995, Notes Numer. Fluid Mech., (1996), Vieweg, Wiesbaden), 547-566 · Zbl 0874.76070
[2] Turek, S.; Hron, J., Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Lecture Notes in Computational Science and Engineering, 371-385, (2006), Springer Berlin Heidelberg · Zbl 1323.76049
[3] Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S., Quantitative benchmark computations of two-dimensional bubble dynamics, Int J Numer Methods Fluids, 60, 11, 1259-1288, (2009) · Zbl 1273.76276
[4] Badr, H. M.; Dennis, S. C.R.; Young, P. J.S., Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers, Comput Fluids, 17, 4, 579-609, (1989) · Zbl 0673.76117
[5] Fabre, D.; Tchoufag, J.; Citro, V.; Giannetti, F.; Luchini, P., The flow past a freely rotating sphere, Theor Comput Fluid Dyn, 31, 5-6, 475-482, (2016) · Zbl 1383.76163
[6] Housiadas, K. D.; Tanner, R. I., The angular velocity of a freely rotating sphere in a weakly viscoelastic matrix fluid, Phys Fluids, 23, 5, 051702, (2011) · Zbl 1308.76141
[7] Juárez, H.; Scott, R.; Metcalfe, R.; Bagheri, B., Direct simulation of freely rotating cylinders in viscous flows by high-order finite element methods, Comput Fluids, 29, 5, 547-582, (2000)
[8] Kang, S.; Choi, H.; Lee, S., Laminar flow past a rotating circular cylinder, Phys Fluids, 11, 11, 3312-3321, (1999) · Zbl 1149.76423
[9] Mittal, S.; Kumar, B., Flow past a rotating cylinder, J Fluid Mech, 476, (2003) · Zbl 1163.76442
[10] Shaafi, K.; Naik, S. N.; Vengadesan, S., Effect of rotating cylinder on the wake-wall interactions, Ocean Eng, 139, 275-286, (2017)
[11] Stojković, D.; Breuer, M.; Durst, F., Effect of high rotation rates on the laminar flow around a circular cylinder, Phys Fluids, 14, 9, 3160-3178, (2002) · Zbl 1185.76357
[12] Xia, Y.; Lin, J.; Ku, X.; Chan, T., Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number, Phys Fluids, 30, 4, 043303, (2018)
[13] Heywood, J.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int J Numer Math Fluids, 22, 325-352, (1992) · Zbl 0863.76016
[14] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput Fluids, 1, 1, 73-100, (1973) · Zbl 0328.76020
[15] Boffi, D., Stabiliy of higher order triangular Hood-Taylor methods for the stationary Stokes equations, Math Models Methods Appl Sci, 04, 02, 223-235, (1994) · Zbl 0804.76051
[16] Franca, L.; Hughes, T., Two classes of mixed finite element methods, Comput Methods Appl Mech Engrg, 69, 89-129, (1988) · Zbl 0629.73053
[17] Schöberl, J., NETGEN an advancing front 2d/3d-mesh generator based on abstract rules, Comput Vis Sci, 1, 1, 41-52, (1997) · Zbl 0883.68130
[18] Schöberl, J., C++ 11 Implementation of Finite Elements in NGSolve, ASC Report 30/2014, (2014), Institute for Analysis and Scientific Computing, Vienna University of Technology
[19] Intel math kernel library. https://software.intel.com/en-us/mkl; 2019.
[20] Babuška, I.; Miller, A., The post-processing approach in the finite element method. I. Calculations of displacements, stresses and other higher derivatives of the displacements, Int J Numer Methods Eng, 20, 1085-1109, (1984) · Zbl 0535.73052
[21] Richter, T., Fluid-structure Interactions. Models, Analysis and Finite Elements, Lecture notes in computational science and engineering, 118, (2017), Springer · Zbl 1374.76001
[22] Ascher, U.; Ruuth, S.; Wetton, B., Implicit-explicit methods for time-dependent partial differential equations, SIAM J Numer Anal, 32, 3, 797-823, (1995) · Zbl 0841.65081
[23] John, V., Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int J Numer Methods Fluids, 44, 7, 777-788, (2004) · Zbl 1085.76510
[24] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous galerkin methods for unsteady incompressible flows, Comput Methods Appl Mech Eng, 307, 339-361, (2016)
[25] John, V.; Linke, A.; Merdon, C.; Neilan, M.; Rebholz, L. G., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev, 59, 3, 492-544, (2017) · Zbl 1426.76275
[26] Schroeder, P. W.; Linke, A.; Lehrenfeld, C.; Lube, G., Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations, SeMA J, 1-25, (2018) · Zbl 1421.35253
[27] Schroeder, P. W.; John, V.; Lederer, P. L.; Lehrenfeld, C.; Lube, G.; Schöberl, J., On reference solutions and the sensitivity of the 2d kelvin–helmholtz instability problem, Comput Math Appl, 77, 4, 1010-1028, (2019)
[28] Lehrenfeld, C., Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems, (2010), RWTH Aachen, Master’s thesis
[29] Becker, R.; Braack, M., A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 4, 173-199, (2001) · Zbl 1008.76036
[30] Braack, M.; Richter, T., Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements, Comput Fluids, 35, 4, 372-392, (2006) · Zbl 1160.76364
[31] Failer L., Richter T.. A parallel Newton multigrid framework for monolithic fluid-structure interactions. arXiv Preprint 2019; URL https://arxiv.org/abs/1904.02401.
[32] Kimmritz, M.; Richter, T., Parallel multigrid method for finite element simulations of complex flow problems on locally refined meshes, Numer Linear Algebra Appl, 18, 4, 615-636, (2010) · Zbl 1265.76043
[33] Logg, A.; Mardal, K.-A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method, (2012), Springer
[34] Alnæs, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A., The fenics project version 1.5, Arch Numer Softw, 3, 100, (2015)
[35] FEniCS project. https://fenicsproject.org/download/; Accessed: 2018-04-01.
[36] Amestoy, P. R.; Guermouche, A.; L’Excellent, J.-Y.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput, 32, 2, 136-156, (2006)
[37] Heiland J. dolfin_navier_scipy: a python SciPy FEniCS interface. 2019. doi:10.5281/zenodo.3238622.
[38] Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python. 2001. Online; www.scipy.org; accessed July 5th, 2019; URL http://www.scipy.org/.
[39] Benner, P.; Heiland, J., Time-dependent Dirichlet conditions in finite element discretizations, ScienceOpen Res, 1-18, (2015)
[40] Brent, R. P., An algorithm with guaranteed convergence for finding a zero of a function, Comput J, 14, 422-425, (1971) · Zbl 0231.65046
[41] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J Comput Phys, 59, 308-323, (1985) · Zbl 0582.76038
[42] Marion, M.; Temam, R., Navier-Stokes equations: Theory and approximation, (Ciarlet, P. G.; Lions, J. L., Numerical Methods for Fluids. Handbook of Numerical Analysis, (1998), Elsevier), 503-688 · Zbl 0921.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.