×

Report on the Birch and Swinnerton-Dyer conjecture. (English) Zbl 1273.11102

The paper provides a nice survey on recent results on the Birch and Swinnerton-Dyer conjecture (BSD from now on). Let \(E\) be an elliptic curve defined over \(\mathbb{Q}\), let \(L(E,s)\) be the associated \(L\)-series, then BSD states that \[ \text{ord}_{s=1}L(E,s)=\text{rank}_{\mathbb{Z}} E(\mathbb{Q})\;. \] A second statement relates the residue of the \(L\)-series at \(s=1\) to the order of the Tate-Shafarevich group of the curve (modulo some computable constants again depending only on the curve). Similar statements are conjectured over any number field \(K\). The first four sections provide a brief introduction to the conjecture and include the outline of a proof of the Mordell-Weil theorem, definition and basic properties of the \(L\)-series \(L(E,s)\) and a discussion of the Fermat-Pell equation which presents some analogies with the formulas of BSD. The final section introduces Shimura curves, Heegner points and modularity results in order to show how they have been employed to provide proofs of some cases of BSD, e.g. for curves of analytic rank 0 (i.e., such that \(L(E,1)\neq 0\)). The (sketched) proofs provide the crucial ideas and an outline of the strategy used to prove the main results of some important recent papers like K. Kato [Astérisque 295, 117–290 (2004; Zbl 1142.11336)] and M. Bertolini and H. Darmon [Ann. Math. (2) 162, No. 1, 1–64 (2005; Zbl 1093.11037)].
The author concludes by hinting at the link between the BSD conjecture and the Iwasawa Main Conjecture for elliptic curves (and \(p\)-adic \(L\)-functions) over cyclotomic and anticyclotomic \(\mathbb{Z}_p\)-extensions: some recent results in this direction (namely C. Skinner and E. Urban [“The Iwasawa main conjectures for \(\mathrm{GL}_2\)”, avaliable at http://www.math.columbia.edu/~urban/eurp/MC.pdf]) should lead to concrete improvements in the understanding of BSD.

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11G05 Elliptic curves over global fields
11G15 Complex multiplication and moduli of abelian varieties
11F33 Congruences for modular and \(p\)-adic modular forms
11R23 Iwasawa theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boutot, J.-F.; Carayol, H. Uniformisation p-adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfel’d. Courbes modulaires et courbes de Shimura (Orsay, 1987/ 1988). Astérisque No. 196–197 (1991), 7, 45–158 (1992).
[2] Breuil C., Conrad B., Diamond F., Taylor R.: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14(4), 843–939 (2001) · Zbl 0982.11033 · doi:10.1090/S0894-0347-01-00370-8
[3] Bertolini Massimo, Darmon Henri: Kolyvagin’s descent and Mordell-Weil groups over ring class fields. J. Reine Angew. Math. 412, 63–74 (1990) · Zbl 0712.14008 · doi:10.1515/crll.1990.412.63
[4] Bertolini Massimo, Darmon Henri: A rigid analytic Gross-Zagier formula and arithmetic applications. With an appendix by Bas Edixhoven. Ann. of Math. (2) 146(1), 111–147 (1997) · Zbl 1029.11027
[5] Bertolini M., Darmon H.: Iwasawa’s main conjecture for elliptic curves over anticyclotomic Z p -extensions. Ann. of Math. (2) 162(1), 1–64 (2005) · Zbl 1093.11037 · doi:10.4007/annals.2005.162.1
[6] Bertolini, M., Darmon, H., and Green, P. Periods and points attached to quadratic algebras. Heegner points and Rankin L-series, 323–367, Math. Sci. Res. Inst. Publ., 49, Cambridge Univ. Press, Cambridge, 2004. · Zbl 1173.11328
[7] Bertolini, M., Darmon, H., and Prasanna, K. Generalised Heegner cycles and p-adic Rankin L-series, submitted. · Zbl 1302.11043
[8] Bertolini, M., Darmon, H., and Prasanna, K. Chow-Heegner points on CM elliptic curves and values of p-adic L-functions, in progress. · Zbl 1326.11026
[9] Bump Daniel, Friedberg Solomon, Hoffstein Jeffrey: Nonvanishing theorems for L-functions of modular forms and their derivatives. Invent. Math. 102(3), 543–618 (1990) · Zbl 0721.11023 · doi:10.1007/BF01233440
[10] Birch B.J., Swinnerton-Dyer H.P.F.: Notes on elliptic curves. II. J. Reine Angew. Math. 218, 79–108 (1965) · Zbl 0147.02506 · doi:10.1515/crll.1965.218.79
[11] Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the Inter national Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich Academic Press, London; Thompson Book Co., Inc., Washington, D.C. 1967 xviii+366 pp.
[12] Conrad Keith: Partial Euler products on the critical line. Canad. J. Math. 57(2), 267–297 (2005) · Zbl 1068.11058 · doi:10.4153/CJM-2005-012-6
[13] Coates J., Wiles A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39(3), 223–251 (1977) · Zbl 0359.14009 · doi:10.1007/BF01402975
[14] Darmon, Henri Wiles’ theorem and the arithmetic of elliptic curves. Modular forms and Fermat’s last theorem (Boston, MA, 1995), 549–569, Springer, New York, 1997.
[15] Darmon, H.; Diamond, F.; Taylor, R. Fermat’s Last Theorem in Current Developments in Mathematics, 1-154, International Press, Cambridge MA, 1994. · Zbl 0877.11035
[16] Deligne, P. Valeurs de fonctions L et périodes d’intégrales. (French) With an appendix by N. Koblitz and A. Ogus. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313–346, Amer. Math. Soc., Providence, R.I., 1979.
[17] Faltings G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983) · Zbl 0588.14026 · doi:10.1007/BF01388432
[18] Gross, Benedict H. Heights and the special values of L-series. Number theory (Montreal, Que., 1985), 115–187, CMS Conf. Proc., 7, Amer. Math. Soc., Providence, RI, 1987.
[19] Gross Benedict H., Zagier Don B.: Heegner points and derivatives of L-series. Invent. Math. 84(2), 225–320 (1986) · Zbl 0608.14019 · doi:10.1007/BF01388809
[20] Iwaniec, Henryk; Kowalski, Emmanuel Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004. xii+615 pp. · Zbl 1059.11001
[21] Kato, Kazuya p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques. III. Astérisque No. 295 (2004), ix, 117–290.
[22] Kim, Minhyong, Classical Motives: Motivic L-functions, preprint. · Zbl 1207.14014
[23] Kolyvagin, V. A. Euler systems. The Grothendieck Festschrift, Vol. II, 435–483, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990. · Zbl 0742.14017
[24] Kuo Wentang, Murty M.: Ram On a conjecture of Birch and Swinnerton-Dyer. Canad. J. Math. 57(2), 328–337 (2005) · Zbl 1068.11045 · doi:10.4153/CJM-2005-014-0
[25] Longo Matteo: On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields. Ann. Inst. Fourier (Grenoble) 56(3), 689–733 (2006) · Zbl 1152.11028
[26] Manin, Ju. I. Cyclotomic fields and modular curves. Uspehi Mat. Nauk 26 (1971), no. 6(162), 7–71.
[27] Manin Ju. I.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat. 36, 19–66 (1972) · Zbl 0243.14008
[28] Mazur B.: Modular curves and the Eisenstein ideal. Inst. Hautes Etudes Sci. Publ. Math. 47, 33–186 (1977) · Zbl 0394.14008 · doi:10.1007/BF02684339
[29] Mazur B.: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129–162 (1978) · Zbl 0386.14009 · doi:10.1007/BF01390348
[30] Mazur B., Swinnerton-Dyer P.: Arithmetic of Weil curves. Invent. Math. 25, 1–61 (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[31] Mazur B., Tate J., Teitelbaum J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84(1), 1–48 (1986) · Zbl 0699.14028 · doi:10.1007/BF01388731
[32] Merel Loic: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124(1-3), 437–449 (1996) · Zbl 0936.11037 · doi:10.1007/s002220050059
[33] Milne, J. S. Arithmetic duality theorems. Second edition. BookSurge, LLC, Charleston, SC, 2006. viii+339 pp. · Zbl 1127.14001
[34] Murty M. Ram, Murty V. Kumar: Mean values of derivatives of modular L-series. Ann. of Math. (2) 133(3), 447–475 (1991) · Zbl 0745.11032 · doi:10.2307/2944316
[35] Rubin Karl: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89(3), 527–559 (1987) · Zbl 0628.14018 · doi:10.1007/BF01388984
[36] Rubin Karl: The ”main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103(1), 25–68 (1991) · Zbl 0737.11030 · doi:10.1007/BF01239508
[37] Sarnak, P., Letter to: Barry Mazur on ”Chebyshev’s bias” on {\(\tau\)}(p), November 2007, author’s web page: http://www.math.princeton.edu/sarnak/
[38] Silverman, Joseph H. The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. xx+513 pp. · Zbl 1194.11005
[39] Skinner, C.; Urban, E. The Iwasawa Main Conjecture for GL2, manuscript. · Zbl 1301.11074
[40] Taylor Richard, Wiles Andrew: Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141(3), 553–572 (1995) · Zbl 0823.11030 · doi:10.2307/2118560
[41] Wiles A.: Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141(3), 443–551 (1995) · Zbl 0823.11029 · doi:10.2307/2118559
[42] Wiles, A., The Birch and Swinnerton-Dyer conjecture, on the Clay Mathematics Institute web site: http://www.claymath.org/millennium/ · Zbl 1194.11006
[43] Zhang Shouwu: Heights of Heegner points on Shimura curves. Ann. of Math. (2) 153(1), 27–147 (2001) · Zbl 1036.11029 · doi:10.2307/2661372
[44] Zhang Shou-Wu: Gross-Zagier formula for GL2. Asian J. Math. 5(2), 183–290 (2001) · Zbl 1111.11030
[45] Waldspurger J.-L.: Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Math. 54(2), 173–242 (1985) · Zbl 0567.10021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.