×

Experimental observation of hairpin auto-generation events in a turbulent boundary layer. (English) Zbl 1359.76007


MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76F40 Turbulent boundary layers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, (2007) · Zbl 1146.76307 · doi:10.1063/1.2717527
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[3] Casey, T. A.; Sakakibara, J.; Thoroddsen, S. T., Scanning tomographic particle image velocimetry applied to a turbulent jet, Phys. Fluids, 25, (2013) · doi:10.1063/1.4790640
[4] Christensen, K. T.; Adrian, R. J., Statistical evidence of hairpin vortex packets in wall turbulence, J. Fluid Mech., 431, 433-443, (2001) · Zbl 1008.76029 · doi:10.1017/S0022112001003512
[5] Del Alamo, J. C.; Jimenez, J., Estimation of turbulent convection velocities and corrections to Taylor’s approximation, J. Fluid Mech., 640, 5-26, (2009) · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[6] Discetti, S.; Natale, A.; Astarita, T., Spatial filtering improved tomographic PIV, Exp. Fluids, 54, 1-13, (2013) · doi:10.1007/s00348-013-1505-7
[7] Eisma, J.; Westerweel, J.; Ooms, G.; Elsinga, G. E., Interfaces and internal layers in a turbulent boundary layer, Phys. Fluids, 27, (2015) · doi:10.1063/1.4919909
[8] Elsinga, G. E.; Adrian, R. J.; Van Oudheusden, B. W.; Scarano, F., Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer, J. Fluid Mech., 644, 35-60, (2010) · Zbl 1189.76023 · doi:10.1017/S0022112009992047
[9] Elsinga, G. E., Kuik, D. J., Van Oudheusden, B. W. & Scarano, F.2007Investigation of the three-dimensional coherent structures in a turbulent boundary layer. In Forty-fifth AIAA Aerospace Sciences Meeting, Reno, NV, AIAA Paper-2007-1305.
[10] Elsinga, G. E.; Scarano, F.; Wieneke, B.; Van Oudheusden, B. W., Tomographic particle image velocimetry, Exp. Fluids, 41, 933-947, (2006) · doi:10.1007/s00348-006-0212-z
[11] Elsinga, G. E.; Westerweel, J., Tomographic-PIV measurement of the flow around a zigzag boundary layer trip, Exp. Fluids, 52, 865-876, (2012) · doi:10.1007/s00348-011-1153-8
[12] Elsinga, G. E.; Westerweel, J.; Scarano, F.; Novara, M., On the velocity of ghost particles and the bias errors in tomographic-PIV, Exp. Fluids, 50, 825-838, (2011) · doi:10.1007/s00348-010-0930-0
[13] Erm, L. P.; Joubert, P. N., Low-Reynolds-number turbulent boundary layers, J. Fluid Mech., 230, 1-44, (1991) · doi:10.1017/S0022112091000691
[14] Ganapathisubramani, B.; Lakshminarasimhan, K.; Clemens, N. T., Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet, Exp. Fluids, 42, 923-939, (2007) · doi:10.1007/s00348-007-0303-5
[15] Ganapathisubramani, B.; Longmire, E. K.; Marusic, I., Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech., 478, 35-46, (2003) · Zbl 1032.76500 · doi:10.1017/S0022112002003270
[16] Gao, Q.; Ortiz-Dueñas, C.; Longmire, E. K., Evolution of coherent structures in turbulent boundary layers based on moving tomographic PIV, Exp. Fluids, 54, 1-16, (2013) · doi:10.1007/s00348-013-1625-0
[17] Ghaemi, S.; Scarano, F., Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer, J. Fluid Mech., 735, 381-426, (2013) · Zbl 1294.76017 · doi:10.1017/jfm.2013.501
[18] Goudar, M. V., Breugem, W. P. & Elsinga, G. E.2016Auto-generation in wall turbulence by the interaction of weak eddies. Phys. Fluids (in press).
[19] Gupta, A. K.; Laufer, J.; Kaplan, R. E., Spatial structure in the viscous sublayer, J. Fluid Mech., 50, 493-512, (1971) · doi:10.1017/S0022112071002726
[20] Hamilton, J. M.; Kim, J.; Waleffe, F., Regeneration mechanisms of near-wall turbulence structures, J. Fluid Mech., 287, 317-348, (1995) · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[21] Herpin, S.; Stanislas, M.; Foucaut, J. M.; Coudert, S., Influence of the Reynolds number on the vortical structures in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 716, 5-50, (2013) · Zbl 1284.76204 · doi:10.1017/jfm.2012.491
[22] Jeong, J.; Hussain, F.; Schoppa, W.; Kim, J., Coherent structures near the wall in a turbulent channel flow, J. Fluid Mech., 332, 185-214, (1997) · Zbl 0892.76036
[23] Jimenez, J.; Hoyas, S.; Simens, M. P.; Mizuno, Y., Turbulent boundary layers and channels at moderate Reynolds numbers, J. Fluid Mech., 657, 335-360, (2010) · Zbl 1197.76063 · doi:10.1017/S0022112010001370
[24] Jimenez, J.; Pinelli, A., The autonomous cycle of near-wall turbulence, J. Fluid Mech., 389, 335-359, (1999) · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[25] Jimenez, J.; Simens, M. P., Low-dimensional dynamics of a turbulent wall flow, J. Fluid Mech., 435, 81-91, (2001) · Zbl 1022.76022 · doi:10.1017/S0022112001004050
[26] Jimenez, J.; Wray, A. A.; Saffman, P. G.; Rogallo, R. S., The structure of intense vorticity in isotropic turbulence, J. Fluid Mech., 255, 65-90, (1993) · Zbl 0800.76156 · doi:10.1017/S0022112093002393
[27] Kähler, C. J.2004 The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. Dissertation, DLR Forschungsbericht 2004-24.
[28] Kähler, C. J.; Scharnowski, S.; Cierpka, C., On the uncertainty of digital PIV and PTV near walls, Exp. Fluids, 52, 1641-1656, (2012) · doi:10.1007/s00348-012-1307-3
[29] Kim, K.; Sung, H. J.; Adrian, R. J., Effects of background noise on generating coherent packets of hairpin vortices, Phys. Fluids, 20, (2008) · Zbl 1182.76375
[30] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 741-773, (1967) · Zbl 1461.76274 · doi:10.1017/S0022112067001740
[31] Lawson, J. M.; Dawson, J. R., A scanning PIV method for fine-scale turbulence measurements, Exp. Fluids, 55, 1-19, (2014) · doi:10.1007/s00348-014-1857-7
[32] Marusic, I., On the role of large-scale structures in wall turbulence, Phys. Fluids, 13, 735, (2001) · Zbl 1184.76351 · doi:10.1063/1.1343480
[33] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, (2013) · Zbl 1284.76206 · doi:10.1017/jfm.2012.511
[34] Perry, A. E.; Marusic, I., A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis, J. Fluid Mech., 298, 361-388, (1995) · Zbl 0849.76030 · doi:10.1017/S0022112095003351
[35] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601-639, (1991) · doi:10.1146/annurev.fl.23.010191.003125
[36] Saikrishnan, N.; Marusic, I.; Longmire, E., Assessment of dual plane PIV measurements in wall turbulence using DNS data, Exp. Fluids, 41, 265-278, (2006) · doi:10.1007/s00348-006-0168-z
[37] Savitzky, A.; Golay, M. J. E., Smoothing and differentiation of data by simplified least squares procedures, Analyt. Chem., 36, 1627-1639, (1964) · doi:10.1021/ac60214a047
[38] Scarano, F.; Riethmuller, M. L., Advances in iterative multigrid PIV image processing, Exp. Fluids, 29, S51-S60, (2000) · doi:10.1007/s003480070007
[39] Schlatter, P.; Brandt, L.; De Lange, H. C.; Henningson, D. S., On streak breakdown in bypass transition, Phys. Fluids, 20, (2008) · Zbl 1182.76669 · doi:10.1063/1.3005836
[40] Schlatter, P.; Li, Q.; Örlü, R.; Hussain, F.; Henningson, D. S., On the near-wall vortical structures at moderate Reynolds numbers, Eur. J. Mech. (B/Fluids), 48, 75-93, (2014) · Zbl 06931934 · doi:10.1016/j.euromechflu.2014.04.011
[41] Schlatter, P.; Örlü, R., Assessment of direct numerical simulation data of turbulent boundary layers, J. Fluid Mech., 659, 116-126, (2010) · Zbl 1205.76139 · doi:10.1017/S0022112010003113
[42] Schlatter, P.; Örlü, R., Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects, J. Fluid Mech., 710, 5-34, (2012) · Zbl 1275.76144 · doi:10.1017/jfm.2012.324
[43] Schoppa, W.; Hussain, F., Coherent structure generation in near-wall turbulence, J. Fluid Mech., 453, 57-108, (2002) · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[44] Schröder, A.; Geisler, R.; Elsinga, G. E.; Scarano, F.; Dierksheide, U., Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV, Exp. Fluids, 44, 305-316, (2008) · doi:10.1007/s00348-007-0403-2
[45] Schröder, A.; Geisler, R.; Staack, K.; Elsinga, G. E.; Scarano, F.; Wieneke, B.; Henning, A.; Poelma, C.; Westerweel, J., Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV, Exp. Fluids, 50, 1071-1091, (2011) · doi:10.1007/s00348-010-1014-x
[46] Sheng, J.; Malkiel, E.; Katz, J., Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer, J. Fluid Mech., 633, 17-60, (2009) · Zbl 1183.76047 · doi:10.1017/S0022112009006934
[47] Smith, C. R.1984Asynthesized model of the near-wall behavior in turbulent boundary layers. In Proceedings of 8th Biennial Symposium on Turbulence (ed. Zakin, J. L. & Patterson, G.), University of Missouri-Rolla.
[48] Smith, C. R.; Metzler, S. P., The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer, J. Fluid Mech., 129, 27-54, (1983) · doi:10.1017/S0022112083000634
[49] Smith, C. R.; Walker, J. D. A.; Haidari, A. H.; Sobrun, U., On the dynamics of near-wall turbulence, Phil. Trans. R. Soc. Lond. A, 336, 131-175, (1991) · Zbl 0731.76033 · doi:10.1098/rsta.1991.0070
[50] Stanislas, M.; Perret, L.; Foucaut, J., Vortical structures in the turbulent boundary layer: a possible route to a universal representation, J. Fluid Mech., 602, 327-382, (2008) · Zbl 1175.76025 · doi:10.1017/S0022112008000803
[51] Tanahashi, M.; Kang, S. J.; Miyamoto, T.; Shiokawa, S.; Miyauchi, T., Scaling law of fine scale eddies in turbulent channel flows up to Re_𝜏 = 800, Intl J. Heat Fluid Flow, 25, 331-340, (2004) · doi:10.1016/j.ijheatfluidflow.2004.02.016
[52] Theodorsen, T.1952Mechanism of turbulence. In Proceedings of the Midwestern Conference on Fluid Mechanics, Ohio State University, Columbus, OH. · Zbl 0142.44201
[53] Waleffe, F., Exact coherent structures in channel flow, J. Fluid Mech., 435, 93-102, (2001) · Zbl 0987.76034 · doi:10.1017/S0022112001004189
[54] Westerweel, J.; Elsinga, G. E.; Adrian, R. J., Particle image velocimetry for complex and turbulent flows, Annu. Rev. Fluid Mech., 45, 409-436, (2013) · Zbl 1359.76008 · doi:10.1146/annurev-fluid-120710-101204
[55] Westerweel, J.; Scarano, F., Universal outlier detection for PIV data, Exp. Fluids, 39, 1096-1100, (2005) · doi:10.1007/s00348-005-0016-6
[56] Wieneke, B., Volume self-calibration for 3D particle image velocimetry, Exp. Fluids, 45, 549-556, (2008) · doi:10.1007/s00348-008-0521-5
[57] Wu, X., Establishing the generality of three phenomena using a boundary layer with free-stream passing wakes, J. Fluid Mech., 664, 193-219, (2010) · Zbl 1221.76102 · doi:10.1017/S0022112010004027
[58] Wu, X.; Moin, P., Direct numerical simulation of turbulence in a nominally zero pressure-gradient flat-plate boundary layer, J. Fluid Mech., 630, 5-41, (2009) · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[59] Wu, Y.; Christensen, K., Population trends of spanwise vortices in wall turbulence, J. Fluid Mech., 568, 55-76, (2006) · Zbl 1104.76025 · doi:10.1017/S002211200600259X
[60] Zhou, J.; Adrian, R. J.; Balachandar, S.; Kendall, T. M., Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396, (1999) · Zbl 0946.76030 · doi:10.1017/S002211209900467X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.