×

Physics and initial data for multiple black hole spacetimes. (English) Zbl 1244.83015

Summary: An orbiting black hole binary will generate strong gravitational radiation signatures, making these binaries important candidates for detection in gravitational wave observatories. The gravitational radiation is characterized by the orbital parameters, including the frequency and separation at the innermost stable circular orbit (ISCO). One approach to estimating these parameters relies on a sequence of initial data slices that attempt to capture the physics of the inspiral. Using calculations of the binding energy, several authors have estimated the ISCO parameters using initial data constructed with various algorithms. In this paper we examine this problem using conformally Kerr-Schild initial data. We present convergence results for our initial data solutions, and give data from numerical solutions of the constraint equations representing a range of physical configurations. In a first attempt to understand the physical content of the initial data, we find that the Newtonian binding energy is contained in the superposed Kerr-Schild background before the constraints are solved. We examine some deficiencies with the initial data approach to orbiting binaries, especially touching on the effects of prior motion and spin-orbital coupling of the angular momenta. Making rough estimates of these effects, we find that they are not insignificant compared to the binding energy, leaving some doubt of the utility of using initial data to predict ISCO parameters. In computations of specific initial-data configurations we find spin-specific effects that are consistent with analytical estimates.

MSC:

83C57 Black holes
83-08 Computational methods for problems pertaining to relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G.B. Cook, Phys. Rev. D 50 pp 5025– (1994) · doi:10.1103/PhysRevD.50.5025
[2] H.P. Pfeiffer, Phys. Rev. D 62 pp 104018– (2000) · doi:10.1103/PhysRevD.62.104018
[3] T.W. Baumgarte, Phys. Rev. D 62 pp 024018– (2000) · doi:10.1103/PhysRevD.62.024018
[4] E. Gourgoulhon, Phys. Rev. D 65 pp 044020– (2002) · doi:10.1103/PhysRevD.65.044020
[5] P. Grandclement, Phys. Rev. D 65 pp 044021– (2002) · doi:10.1103/PhysRevD.65.044021
[6] E. Gourgoulhon, Int. J. Mod. Phys. A 17 pp 2689– (2002) · doi:10.1142/S0217751X02011618
[7] G.B. Cook, Phys. Rev. D 65 pp 084003– (2002) · doi:10.1103/PhysRevD.65.084003
[8] H.P. Pfeiffer, Phys. Rev. D 66 pp 024047– (2002) · doi:10.1103/PhysRevD.66.024047
[9] G.B. Cook, Living Rev. Relativ. 3 pp 5– (2000)
[10] P. Peters, Phys. Rev. 131 pp 435– (1963) · Zbl 0114.43902 · doi:10.1103/PhysRev.131.435
[11] T. Mora, Phys. Rev. D 66 pp 101501– (2002) · doi:10.1103/PhysRevD.66.101501
[12] D.M. Shoemaker, Phys. Rev. D 62 pp 124005– (2000) · doi:10.1103/PhysRevD.62.124005
[13] M.F. Huq, Phys. Rev. D 66 pp 084024– (2002) · doi:10.1103/PhysRevD.66.084024
[14] O. Dreyer, Phys. Rev. D 67 pp 024018– (2003) · doi:10.1103/PhysRevD.67.024018
[15] N.Ó. Murchadha, Phys. Rev. D 10 pp 428– (1974) · doi:10.1103/PhysRevD.10.428
[16] N.Ó. Murchadha, Phys. Rev. D 10 pp 437– (1974) · doi:10.1103/PhysRevD.10.437
[17] N.Ó. Murchadha, Gen. Relativ. Gravit. 7 pp 257– (1976) · doi:10.1007/BF00768526
[18] J.W. York, Jr., Phys. Rev. Lett. 82 pp 1350– (1999) · Zbl 0949.83011 · doi:10.1103/PhysRevLett.82.1350
[19] J.R. Wilson, Phys. Rev. Lett. 75 pp 4161– (1995) · doi:10.1103/PhysRevLett.75.4161
[20] J.R. Wilson, Phys. Rev. D 54 pp 1317– (1996) · doi:10.1103/PhysRevD.54.1317
[21] J.M. Bowen, Phys. Rev. D 21 pp 2047– (1980) · doi:10.1103/PhysRevD.21.2047
[22] A. Garat, Phys. Rev. D 61 pp 124011– (2000) · doi:10.1103/PhysRevD.61.124011
[23] N. Jansen, Class. Quantum Grav. 20 pp 51– (2003) · Zbl 1028.83010 · doi:10.1088/0264-9381/20/1/304
[24] R. Matzner, Phys. Rev. D 59 pp 024015– (1999) · doi:10.1103/PhysRevD.59.024015
[25] P. Marronetti, Phys. Rev. D 62 pp 024017– (2000) · doi:10.1103/PhysRevD.62.024017
[26] P. Marronetti, Phys. Rev. Lett. 85 pp 5500– (2000) · Zbl 1369.83050 · doi:10.1103/PhysRevLett.85.5500
[27] J.D. Brown, Phys. Rev. D 47 pp 1407– (1993) · doi:10.1103/PhysRevD.47.1407
[28] D. Brill, Phys. Rev. 131 pp 471– (1963) · Zbl 0117.23604 · doi:10.1103/PhysRev.131.471
[29] A. Čadež, Ann. Phys. (N.Y.) 83 pp 449– (1974) · doi:10.1016/0003-4916(74)90206-1
[30] C. Misner, Phys. Rev. 118 pp 1110– (1960) · Zbl 0090.44205 · doi:10.1103/PhysRev.118.1110
[31] R.H. Price, Phys. Rev. Lett. 87 pp 231101– (2001) · doi:10.1103/PhysRevLett.87.231101
[32] R. Wald, Phys. Rev. D 6 pp 406– (1972) · doi:10.1103/PhysRevD.6.406
[33] S. Dain, Phys. Rev. D 66 pp 084019– (2002) · doi:10.1103/PhysRevD.66.084019
[34] H. Pfeiffer, Comput. Phys. Commun. 152 pp 253– (2003) · Zbl 1196.65179 · doi:10.1016/S0010-4655(02)00847-0
[35] P.R. Brady, Phys. Rev. D 58 pp 061501– (1998) · doi:10.1103/PhysRevD.58.061501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.