×

Analytic aspects of the circulant Hadamard conjecture. (Aspects analytiques de la conjecture d’Hadamard circulante.) (English. French summary) Zbl 1297.05042

The paper describes three different approaches toward the circulant Hadamard matrix conjecture. The approaches are based on viewing the real circulant Hadamard matrices as extremal or boundary cases of appropriate complex matrices, including Fourier matrices.

MSC:

05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
15B34 Boolean and Hadamard matrices
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agaian, S. S., Hadamard matrices and their applications, 1168 (1985) · Zbl 0575.05015
[2] Arasu, K. T.; de Launey, Warwick; Ma, S. L., On circulant complex Hadamard matrices, Des. Codes Cryptogr., 25, 2, 123-142 (2002) · Zbl 1017.05030 · doi:10.1023/A:1013817013980
[3] Backelin, Jörgen, Square multiples n give infinitely many cyclic n-roots, Reports/Univ. of Stockholm (1989)
[4] Banica, Teo; Hiranandani, Gaurush; Nechita, Ion; Schlenker, Jean-Marc, Small circulant complex Hadamard matrices of Butson type, arXiv preprint arXiv:1311.5390 (2013) · Zbl 1321.05026
[5] Banica, Teo; Nechita, Ion; Schlenker, Jean-Marc, Submatrices of Hadamard matrices: complementation results, arXiv preprint arXiv:1311.0764 (2013) · Zbl 1321.15051
[6] Banica, Teodor, The Gale-Berlekamp game for complex Hadamard matrices, arXiv preprint arXiv:1310.1810 (2013) · Zbl 1267.15027
[7] Banica, Teodor; Collins, Benoît; Schlenker, Jean-Marc, On orthogonal matrices maximizing the 1-norm, Indiana Univ. Math. J., 59, 3, 839-856 (2010) · Zbl 1228.15013 · doi:10.1512/iumj.2010.59.3926
[8] Banica, Teodor; Collins, Benoit; Schlenker, Jean-Marc, On polynomial integrals over the orthogonal group, J. Combin. Theory Ser. A, 118, 3, 778-795 (2011) · Zbl 1231.05282 · doi:10.1016/j.jcta.2010.11.015
[9] Banica, Teodor; Nechita, Ion, Almost Hadamard matrices: the case of arbitrary exponents, Discrete Appl. Math., 161, 16-17, 2367-2379 (2013) · Zbl 1285.05023 · doi:10.1016/j.dam.2013.05.012
[10] Banica, Teodor; Nechita, Ion; Życzkowski, Karol, Almost Hadamard matrices: general theory and examples, Open Syst. Inf. Dyn., 19, 4 (2012) · Zbl 1263.15030 · doi:10.1142/S1230161212500242
[11] Bengtsson, Ingemar; Bruzda, Wojciech; Ericsson, Åsa; Larsson, Jan-Åke; Tadej, Wojciech; Życzkowski, Karol, Mutually unbiased bases and Hadamard matrices of order six, J. Math. Phys., 48, 5 (2007) · Zbl 1144.81314 · doi:10.1063/1.2716990
[12] Björck, Göran, Recent advances in Fourier analysis and its applications (Il Ciocco, 1989), 315, 131-140 (1990) · Zbl 0726.43004
[13] Björck, Göran; Fröberg, Ralf, A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic \(n\)-roots, J. Symbolic Comput., 12, 3, 329-336 (1991) · Zbl 0751.12001 · doi:10.1016/S0747-7171(08)80153-8
[14] Bjorck, Goran; Haagerup, Uffe, All cyclic p-roots of index 3, found by symmetry-preserving calculations, arXiv preprint arXiv:0803.2506 (2008)
[15] Butson, A. T., Generalized Hadamard matrices, Proc. Amer. Math. Soc., 13, 894-898 (1962) · Zbl 0109.24605 · doi:10.1090/S0002-9939-1962-0142557-0
[16] Collins, Benoît; Śniady, Piotr, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys., 264, 3, 773-795 (2006) · Zbl 1108.60004 · doi:10.1007/s00220-006-1554-3
[17] Craigen, R.; Kharaghani, H., On the nonexistence of Hermitian circulant complex Hadamard matrices, Australas. J. Combin., 7, 225-227 (1993) · Zbl 0778.05025
[18] Faugère, Jean-Charles, Computer mathematics (Matsuyama, 2001), 9, 1-12 (2001) · Zbl 1030.68112
[19] Gilbert, John; Rzeszotnik, Ziemowit, The norm of the Fourier transform on finite abelian groups, Ann. Inst. Fourier (Grenoble), 60, 4, 1317-1346 (2010) · Zbl 1202.42065 · doi:10.5802/aif.2556
[20] Gorin, T., Integrals of monomials over the orthogonal group, J. Math. Phys., 43, 6, 3342-3351 (2002) · Zbl 1060.22005 · doi:10.1063/1.1471367
[21] Goyeneche, D., Mutually unbiased triplets from non-affine families of complex Hadamard matrices in dimension 6, J. Phys. A, 46, 10 (2013) · Zbl 1264.81074 · doi:10.1088/1751-8113/46/10/105301
[22] Haagerup, Uffe, Operator algebras and quantum field theory (Rome, 1996), 296-322 (1997) · Zbl 0914.46045
[23] Haagerup, Uffe, Cyclic p-roots of prime lengths p and related complex Hadamard matrices, arXiv preprint arXiv:0803.2629 (2008)
[24] de la Harpe, Pierre; Jones, Vaughan, Paires de sous-algèbres semi-simples et graphes fortement réguliers, C. R. Acad. Sci. Paris Sér. I Math., 311, 3, 147-150 (1990) · Zbl 0707.46039
[25] Horadam, K. J., Hadamard matrices and their applications (2007) · Zbl 1145.05014
[26] Jedwab, Jonathan; Lloyd, Sheelagh, A note on the nonexistence of Barker sequences, Des. Codes Cryptogr., 2, 1, 93-97 (1992) · Zbl 0762.94009 · doi:10.1007/BF00124212
[27] Jones, V.; Sunder, V. S., Introduction to subfactors, 234 (1997) · Zbl 0903.46062 · doi:10.1017/CBO9780511566219
[28] Lam, T. Y.; Leung, K. H., On vanishing sums of roots of unity, J. Algebra, 224, 1, 91-109 (2000) · Zbl 1099.11510 · doi:10.1006/jabr.1999.8089
[29] de Launey, Warwick, On the nonexistence of generalised weighing matrices, Ars Combin., 17, A, 117-132 (1984) · Zbl 0538.05017
[30] de Launey, Warwick; Levin, David A., A Fourier-analytic approach to counting partial Hadamard matrices, Cryptogr. Commun., 2, 2, 307-334 (2010) · Zbl 1225.05056 · doi:10.1007/s12095-010-0033-z
[31] Leung, Ka Hin; Schmidt, Bernhard, New restrictions on possible orders of circulant Hadamard matrices, Des. Codes Cryptogr., 64, 1-2, 143-151 (2012) · Zbl 1242.15027 · doi:10.1007/s10623-011-9493-1
[32] Pólya, Georg, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann., 84, 1-2, 149-160 (1921) · JFM 48.0603.01 · doi:10.1007/BF01458701
[33] Popa, Sorin, Orthogonal pairs of \(\ast \)-subalgebras in finite von Neumann algebras, J. Operator Theory, 9, 2, 253-268 (1983) · Zbl 0521.46048
[34] Prosen, T.; Seligman, T. H.; Weidenmüller, H. A., Integration over matrix spaces with unique invariant measures, J. Math. Phys., 43, 10, 5135-5144 (2002) · Zbl 1060.81033 · doi:10.1063/1.1506955
[35] Ryser, Herbert John, Combinatorial mathematics (1963) · Zbl 0112.24806
[36] Schmidt, Bernhard, Cyclotomic integers and finite geometry, J. Amer. Math. Soc., 12, 4, 929-952 (1999) · Zbl 0939.05016 · doi:10.1090/S0894-0347-99-00298-2
[37] Szöllősi, Ferenc, Exotic complex Hadamard matrices and their equivalence, Cryptogr. Commun., 2, 2, 187-198 (2010) · Zbl 1228.05097 · doi:10.1007/s12095-010-0021-3
[38] Szöllősi, Ferenc, A two-parameter family of complex Hadamard matrices of order 6 induced by hypocycloids, Proc. Amer. Math. Soc., 138, 3, 921-928 (2010) · Zbl 1189.15035 · doi:10.1090/S0002-9939-09-10102-8
[39] Tadej, Wojciech; Życzkowski, Karol, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn., 13, 2, 133-177 (2006) · Zbl 1105.15020 · doi:10.1007/s11080-006-8220-2
[40] Tao, Terence, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett., 11, 2-3, 251-258 (2004) · Zbl 1092.42014 · doi:10.4310/MRL.2004.v11.n2.a8
[41] Tao, Terence, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett., 12, 1, 121-127 (2005) · Zbl 1080.42002 · doi:10.4310/MRL.2005.v12.n1.a11
[42] Turyn, Richard J., Character sums and difference sets, Pacific J. Math., 15, 319-346 (1965) · Zbl 0135.05403 · doi:10.2140/pjm.1965.15.319
[43] Werner, R. F., All teleportation and dense coding schemes, J. Phys. A, 34, 35, 7081-7094 (2001) · Zbl 1024.81006 · doi:10.1088/0305-4470/34/35/332
[44] Winterhof, Arne, On the non-existence of generalized Hadamard matrices, J. Statist. Plann. Inference, 84, 1-2, 337-342 (2000) · Zbl 0958.05014 · doi:10.1016/S0378-3758(99)00147-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.